
Production of Large
Computer Programs
H E R B E R T D. B E N I N G T O N

The paper is adapted from a presentation at a symposium on advanced
programming methods for digital computers sponsored by the Navy
Mathematical Computing Advisory Panel and the Office of Naval Research in
June 1956. The author describes the techniques used to produce the
programs for the Semi-Automatic Ground Environment (SAGE) system.

Categories and Subject Descriptors: K. 2 [History of Computing]--SAGE,
software, systems
General Terms: Design, Management
Additional Key Words and Phrases: Lincoln Laboratory

Editor's Note

When we all began to work on SAGE, we believed our
own myths about software--that one can do anything
with software on a general-purpose computer; that
software is easy to write, test, and maintain; that it is
easily replicated, doesn't wear out, and is not subject
to transient errors. We had a lot to learn.

AS Herb Benington discusses in the following
paper, we had already successfully written quite a lot
of software for experimental purposes. We were
misled by the success we had had with capable
engineers writing programs that were small enough
for an individual to understand fully. With SAGE, we
were faced with programs that were too large for one
person to grasp entirely and also with the need to hire
and train large numbers of people to become
programmers--after all, there were only a handful of
trained programmers in the whole world. We were
faced with organizing and managing a whole new art.

Bob Wieser (who led the software design and
production effort at Lincoln) and his group decided
with great wisdom to build the tools needed for such
an endeavor instead of trying to do the whole job with
the limited resources at hand. We paid a price--the
schedule slipped by a year--t/ut the organization that
was established really got on top of the job and
stayed on top.

Much of what Herb and others created for the SAGE
job was forgotten and had to be relearned later by
others when they faced similar problems. I confess to
having a certain amount of purely human pleasure at
watching other organizations suffer through the
problems of building large programs--organizations
that had been so critical of our own difficulties.

One thing not to forget is the challenge of putting
so large and complex a program into a limited
computer capacity. The FSQ-7 was the largest
machine we felt able to build in the early 1950s; its
capacity is trivial by today's standards. One might
think that with today's technology, SAGE-like software
would be easier to build. Unfortunately, this seems not
to be so. There is a kind of Parkinson's Law for
software: it is infinitely expandable and swells up to
exceed whatever capacity is provided for it.

"Production of Large Computer Programs" by H.D. Benington from Annals
of the History of Computing, Volume 5, Number 4, October 1983, pages
350-361. Copyright 1983 by AFIPS Press---reprinted with permission.

© 1983 AFIPS 0164-1239/83/040350-361 $01.00/00

Foreword

The following paper is a description of the
organization and techniques we used at MIT's
Lincoln Laboratory in the mid-1950s to produce

Annals of the History of Computing, Volume 5, Number 4, October 1983

299

http://crossmark.crossref.org/dialog/?doi=10.5555%2F41765.41799&domain=pdf&date_stamp=1987-03-01

programs for the SAGE air-defense system. The paper
appeared a year before the announcement of SAGE;
no mention was made of the specific application
other than to indicate that the program was used in
a large control system. The programming effort was
very large--eventually, close to half a million
computer instructions. About one-quarter of these
instructions supported actual operational air-defense
missions. The remainder were used to help generate
programs, to test systems, to document the entire
process, and to support those other managerial and
analytic chores so essential to producing a good
computer program.

As far as I know, there was no comparable effort
under way in the United States at the time, and
none was started for several years. Highly complex
programs were being written for a variety of
mathematical, military, and intelligence applications,
but these did not represent the concerted efforts of
hundreds of people attempting to produce an
integrated program with hundreds of thousands of
instructions and highly related functionality. In a
letter to me on April 23, 1981, Barry W. Boehm,
director of software research and technology at
TRW, says of the paper, "I wish I had known of it a
couple of years ago when I wrote [a] paper indicating
how many of today's software engineering hot topics
had already been understood in 1961 in Bill Hosier's
IRE article. Your paper predates much of that
understanding by another five years."

By chance, the paper was presented in
Washington, D.C., in June 1956 at a symposium on
advanced programming methods for digital
computers, sponsored by the Navy Mathematical
Computing Advisory Panel and the Office of Naval
Research. The paper was given there because Wes
Melahn (soon to become president of System
Development Corporation, and now at the MITRE
Corporation) was deeply concerned with the
programming of an air-defense system, as well as
with the theory and mathematics of advanced digital
computing at universities. All the other papers at the
symposium were presented from the perspective of
either universities or the nascent computing
industry. The hot topics were machine organization,
development of algorithms, and the development of
higher-order languages. The common goal was to
produce instructions that cost less than $1 per line.
The audience was somewhat chilled to hear that we
could not do better than $50 per instruction in our
particular effortmand that we were talking about
tens of thousands of pages of documentation.

I lost interest in the subject until several years ago,
when I joined the MITRE Corporation and became
interested in what had happened to data processing

in the ensuing 20-25 years. I showed the paper to a
number of colleagues, some of whom knew nothing
of the SAGE development and some of whom had
been deeply involved with it. Generally speaking,
they were surprised that we had developed or used
techniques with SAGE that today are considered
essential to the effective production of large
computer programs. (We did omit a number of
important approaches, which I will say a little more
about below.)

It is easy for me to single out the one factor that I
think led to our relative success: we were all
engineers and had been trained to organize our
efforts along engineering lines. We had a need to
rationalize the job; to define a system of
documentation so that others would know what was
being done; to define interfaces and police them
carefully; to recognize that things would not work
well the first, second, or third time, and therefore
that much independent testing was needed in
successive phases; to create development tools that
would help build products and test tools and to make
sure they worked; to keep a record of everything that
really went wrong and to see whether it really got
fixed; and, most important, to have a chief engineer
who was cognizant of these activities and responsible
for orchestrating their interplay. In other words, as
engineers, anything other than structured
programming or a top-down approach would have
been foreign to us.

Between the early 1950s and the mid-1960s,
thousands of computer programmers participated in
the design, testing, installation, or maintenance of
SAGE. They learned the system well, and as a result,
the chances are reasonably high that on a large data-
processing job in the 1970s you would find at least
one person who had worked with the SAGE system.
The initial SAGE prototype program slipped its initial
schedule by about one year. After that, dozens of
major modifications were installed at dozens of sites
with slips of at most several weeks. The disciplined
approach, which had started at MIT's Lincoln
Laboratory, persisted for over 15 years at SDC. Why
is it, then, that there are so many tales of computer-
program projects whose schedule slippages were
much greater than SAGE's and whose overruns are
often horrendous? There are three major reasons.
First, the industry went through a phase where we

decided that computer programming and the
computer programmer were "different." They could
not work and would not prosper under the rigid
climate of engineering management. Just a few years
ago, I heard with amazement the executive vice-
president of one of our very largest information-
system firms say, "Herb, you have to realize the

Annals of the History of Computing, Volume 5, Number 4, October 1983 •

300

programmers are different; they have got to get
special treatment." I almost ran out to sell his stock
short, but then I discovered that his more realistic
middle management had realized the failure of this
nostalgic view of the computer programmer.

Second, if anything, the pendulum has swung too
far in the other direction. Many of our government-
procurement documents act as if one produces
software in the same way that one manufactures
spacecraft or boots. When I got back into the
computer programming business several years ago,
I read a number of descriptions of top-down
programming. The great majority seemed to espouse
the following approach: we must write the initial top-
down specification (for example, the A Spec), then
the next one (typically, the B Spec), so we will know
precisely what our objectives are before we produce
one line of code. This attitude can be terribly
misleading and dangerous. To stretch an analogy
slightly, it is like saying that we must specify the
characteristics of a rocket engine before measuring
the burning properties of liquid hydrogen. Generally,
software is the most complex component of a system.
Twice as much software can improve the
performance of a system by 1 percent or by 500
percent. The percentage can only be determined if a
great deal of detailed analysis (including coding) is
undertaken to understand the "burning properties"
of software. I do not mention it in the attached
paper, but we undertook the programming only after
we had assembled an experimental prototype of
35,000 instructions of code that performed all of the
bare-bone functions of air defense. Twenty people
understood in detail the performance of those 35,000
instructions; they knew what each module would do,
they understood the interfaces, and they understood
the performance requirements. People should be very
cautious about writing top-down specs without
having this detailed knowledge, so that the decision-
maker who has the "requirement" can make the
proper trade-offs between performance, cost, and
risk.

To underscore this point, the biggest mistake we
made in producing the SAGE computer program was
that we attempted to make too large a jump from the
35,000 instructions we had operating on the much
simpler Whirlwind I computer to the more than
100,000 instructions on the much more powerful
IBM SAGE computer. If I had it to do over again, I
would have built a framework that would have
enabled us to handle 250,000 instructions, but I
would have transliterated almost directly only the
35,000 instructions we had in hand on this
framework. Then I would have worked to test and

evolve a system. I estimate that this evolving
approach would have reduced our overall software
development costs by 50 percent.

The third reason that we keep seeing missed
schedules was pointed out to me by the editor of one
of our best computing journals, who says he has
concluded that producing large computer programs is
like raising a family. You ean observe your neighbors
and see all of the successes and failures in their
children. You can reflect on the experiences you had
as one member of a large family. You can observe all
the proper maxims of life and society. You can even
study at length the experiences of many others who
have raised families. In the final analysis, however,
you have to start out and do it on your own, learn
the unique options you have, see what unexpected
problems arise, and, with reasonable luck, perform
about as well as those who have been doing it
forever.

The latter observation may be reassuring to the
new program manager, but there have been
numerous significant advances in the techniques for
producing large computer programs since we did the
SAGE job over 25 years ago. A few that strike me as
most important are:

• We now use higher-order languages in virtually all
situations.

• Almost all software development and unit testing
are done interactively at consoles in a time-
sharing mode.

• We have developed a large family of tools that
allow us to do much precise design and flow
analysis before coding. (I still say that we should
use these techniques before we start finalizing our
top-down requirements.)

• We have developed organizational approaches that
improve or at least guarantee the quality of the
systems much earlier in the game. These include
some of the structured languages, code reviews,
walk-throughs, etc.

For further progress, I would stress the following.

• Since the SAGE effort, we have talked about the
need to invest in tools that help produce
programs--that is, in tools for coding, editing,
testing and debugging, configuration management,
consistency checking, structural analysis, etc. I
believe too little effort has been spent on thinking
through such tools and standardizing them so that
they can become analogous to the relatively few
higher-order languages that we use with great
facility.

• Finally, there remains a tremendous range and
ability among computer programmers to do

• Annals of the History of Computing, Volume 5, Number 4, October 1983

301

different jobs. Some are good gem-cutters for any
kind of stone. Some can play very special roles--
for example, where fastidious approaches are
needed. Some are brilliant and articulate
conceptualizers and leaders. Some should not be
allowed near a computer. We must learn to
recognize these types, to use them in their right
place, and to set higher standards for not using
people even though the market seems insatiable.

--Herbert D. Benington

Introduction

At the 1955 Eastern Joint Computer Conference, Jay
W. Forrester suggested that the evolution of electronic
digital computers might be roughly divided into five-
year periods, each period with its paramount signifi-
cance.

1945-1950 was the period of electronic design. From
1950-1955, attention has been focused on the solution of
scientific and engineering problems. 1955-1960 will
encompass the upswing in the commercial data-
processing applications 1960-1965 will probably
mark the shift of major attention to the use of digital
computers as the central elements in real-time control
systems.

With respect to this last period, Forrester continues:

General purpose digital computers, as outlined in [recent
news] releases, are to be the nerve centers for tying
together the flow of information in our forthcoming new
air defense system. This type of control system, we can
assume, will develop further into a high-speed automatic
control and regulation of future civilian air traffic

[Or,] consider the chemical plants and oil
refineries In the last 30 years the automatic controls
in an oil refinery have risen . . . to some 15 percent of
the investment in a refinery [or often about] $15,000
worth of automatic controls. I believe we will see digital
computers as controllers and monitors of operation in
these plants to permit closer control, higher-speed
chemical reactions, larger outputs, and a better product.

During the past five years, we have seen develop-
ments in automatic programming where the emphasis
has paralleled Forrester's first three periods. We can
compare the electronic-design phase with the devel-
opment of basic programming techniques of transla-
tion, compilation, and interpretive routines. Scientific
and engineering calculations have been assisted by the
PACT and A-2 compiling systems, and commercial data
processing by BIOR and B-0 (to name but a few). More
important, our colleagues who build computers have
come to realize that a computer is not useful until it
has been programmed, and that programming is an

expensive job that requires both machine assistance
and human sympathy.

This paper looks ahead at some programming prob-
lems that are likely to arise during Forrester's 1960-
1965 period of real-time control applications. At first
glance, these are problems that will result from the
need for very large, very efficient programs, where one
program (consisting of over 100,000 machine instruc-
tions) may be used in several machines during periods
of months or years. On closer inspection, we realize
that these are problems that must be faced whenever
the need arises for the systematic preparation and
operation of large, integrated programs, whether these
programs are used for commercial processing, scien-
tific calculation, or program preparation itself.

During the past several years at the Lincoln Labo-
ratory, several system programs containing over
30,000 machine instructions each have been prepared.
These programs are used for data processing and
control in real-time systems. Production of these pro-
grams is briefly described here, particularly in terms
of cost and organization. Four problem areas are
stressed.

The first problem is computer operation. Computer
time is at a premium when a large program is being
prepared by relatively inexperienced programmers,
when the machine and its terminal equipment are
being shaken down, and when the machine-program
system requires inordinate testing and debugging. The
only answer is highly systematic, highly mechanized
program preparation and computer operation. A Lin-
coln Utility System of service routines containing
40,000 instructions has been prepared to ease this
problem.

The second problem is program or system reliability.
Needless to say, a large program is distressingly prone
to all types of design and coding errors, including some
very subtle ones. In spite of this tendency, it must be
extremely reliable if it is to control effectively a system
involving extensive equipment or manpower. This is
true not only in a real-time system, but also in com-
mercial applications unless equipment engineers can
outvote lawyers. Reliability is also a major factor in
the preparation of ambitious automatic programming
systems~how many unreliable programs have been
produced with supposedly well-tested compilers?

Next, there is the problem of supporting programs.
It has been the experience of the Lincoln Laboratory
that a system of service programs equal in size to the
main system program must be maintained to support
preparation, testing, and maintenance of the latter.

Finally, there is the problem of documentation. In
the early days of programming, you could call up the
programmer if the machine stopped. You seldom mod-

Annals of the History of Computing, Volume 5, Number 4, October 1983 •

302

CONTROL

i _ MANUAL _

I i: u..u.s
/ ' , I I t",, I /',..ITE''NA'EOU"MEN"

/ / I "
, 1 l l (i .ECORO,.
~ ! I i ! i = ! 1 I ! ! I =

i.V,.ONM NT

Figure 1. Typical control system. In general, a typical
control system uses automatic and manual elements. The
automatic portion consists of a centralized digital
computer, terminal equipment communicating with the
environment, and a computer program incorporating
system memory and standard operational procedures.

ified another person's program--you wrote your own.
Although present automatic programming technology
has done much to make programs more communicable
among programmers, there is a long way to go before
we can take an integrated program of 100,000 instruc-
tions and make it "public property" for the user, the
coder, the tester, the evaluator, and the on-site main-
tenance programmer. The only answer seems to be
the documentation of the system on every level from
sales brochures for management to instruction listings
for maintenance engineers. Such documentation will
require the development of new methods and new
languages; more significantly, it will require a much
more extensive use of the computer to assist in pro-
gram production, documentation, and maintenance.

At the last ONR symposium on automatic program-
ming held two years ago, the most popular theme was
simplifying program input through the use of symbolic
inputs, machine compilation and generation, algebraic
translation, etc. Very little was said about checkout or
debugging, training, or operation. I suspect that for
many the past two years have been a period of realizing
that automatic programming concepts must go beyond
the input process into these other areas.

Large Programs for Control and Processing

Before considering these problems in more detail,
consider some rudiments of large systems and large
programs. Figure 1 represents a broad flowchart of a

typical control and processing system such as might
be used for air-traffic control, industrial-plant control,
or commercial applications. The area inside the
dashed line represents the control system; the area
outside is the environment to be controlled. In general,
control consists of a manual and an automatic com-
ponent. Manual in-out data could use voice phones or
radios, teletypes, meters, etc. Typical automatic inputs
and outputs might be teletype data or high-bandwidth
digital data from or to analog-to-digital converters.

The central control is a high-speed, general-pur-
pose, digital machine that includes in-out terminal
equipment and is controlled itself by the system pro-
gram. Depending on the degree of system automation,
manual control and processing might range anywhere
from one half-awake computer operator (who will be
awakened by an alarm) to a staff of several hundred
operators and supervisors, each of whom must com-
municate directly with the computer. The machine
can signal the man through indicator lights and
alarms, cathode-ray displays, or printed data; the man
can respond with digital keyboard inputs or a variety
of analog-to-digital devices. Periodically, the computer
records data for later analysis of system performance.

From the computer's point of view, then, the system
consists of a wide variety of inputs and outputs, each
with different data characteristics--peak rate, average
rate, reliability, coding, etc. The system program must
perform a wide variety of tasks.

1. It must remember the state of environment. De-
pending on the application, this may require from
100,000 to many billions of bits of information stored
on drums, tapes, or photographic plates.

B O O K -
I N P U T O U T P U T K E E P I N G C O N T R O L P R O C E S S I N G

I S O L A T E D
T A B L E S

1 , 0 0 0 I T E M S

C E N T R A L
T A B L E S

1 , 0 0 0 I T E M S

n i • • ~

0 •

8 l • | •

$

Figure 2. Static program organization. A system program
of 100,000 instructions is organized into programming
groups for input, output, etc. Each group contains several
subprograms and requires both isolated and central tables.

• Annals of the History of Comput ing, Volume 5, Number 4, October 1983

3 0 3

2. It must sample each input either periodically or
on demand, translate the data, test for reasonableness
(usually in terms of the present state of the environ-
ment), and either revise its memory content accord-
ingly or transmit the data for further processing.

3. It must, either periodically or on demand, calcu-
late, monitor, correlate, predict, control, summarize,
record, and decide.

4. It :must encode and transmit outputs to all ter-
minal devices.

5. Finally, the program must control the frequency
and sequence with which it performs each input, out-
put, processing, or bookkeeping task.

In order to give these features some physical mean-
ing, let us attach rough numbers to a typical control
problem. Figure 2 shows the organization of a typical
100,000-instruction program that contains 80 compo-
nent subprograms. In other words, each subfunction
requires a logically distinct subprogram containing an
average of 1250 instructions. In the figure, each box
(e.g., I12) represents a subprogram; they are grouped
as follows.

1. There are four major input channels (e.g.,
punched cards, teletype, audio-bandwidth data link,
and manual keyboards) designated by program groups
I1 to I4. For each channel, several different types or
sources of data are received by the control element.
For example, I3 requires seven subprograms, I31 to
I37.

2. There are four major processing functions, which
require a total of 24 component subprograms. In an
air-traffic-control application, a typical process might
be: first, review all aircraft landing at all airports;
next, monitor these with respect to airspace assign-
ment and sudden trouble situations; finally, prepare a
revised space assignment.

3. A third group of 15 subprograms are required for
program bookkeeping. These programs coordinate
communications between all other programs, monitor
ystem load, and prepare summary data for output.

4. The output makeup programs use three chan-
n e l s - f o r example, cathode-ray display, audio-band-
width data link, and teletype. Fourteen subprograms
are required to scan the system memory and make up
properly coded output messages.

5. Finally, seven control subprograms are required
to control the timing, sequencing, and operation of all
other subprograms.

The 100,000 instructions represent standing opera-
tional procedures for the system; they do not change
as the system operates. The system memory, which is
stored separately in system tables, can be broken down
into two blocks: isolated tables, which store informa-

COMPONENT
PROGRAM

ISOLATED
TABLES

CENTRAL
TABLES

CONTROL

TIME

I l l P12 121 O12 136 B33 P22 P23

---n 0 no 0°0 0---
---o °Oo oOO O--- STORAGE

---I-I o 0 D I-1D r] o---
---O O DO ODD O---

Figure 3. Dynamic program operation. Component
subprograms (Figure 2) time-share the control computer.
Each component program requires isolated and central
tables; a control program, which remains permanently in
storage, directs sequence and frequency of operation of
component subprograms.

tion required by one program group only (e.g., I2), and
central tables, which store data shared by two or more
program groups. In measuring the complexity of the
table structure, the total table memory required by
tables is not nearly so important as the number of
items. In this sense, an item is defined as one unique
type of information. A single item may be represented
once in the tables (e.g., "process I42 is being per-
formed"), or the item may be represented 1 million
times (e.g., "customer account number").

In the example given, 1000 items each are required
for the isolated and central tables. For 10 of the central
items, the program groups which set or use the item
are shown; for example, the first item is used by I1,
I4, O3, B2, C1, C2, P2, and P4. If 1000 such lines were
drawn, the dot matrix would measure the communi-
cations (and complexity) within the program.

Figure 3 shows how the component subprograms
time-share the machine to perform the control and
processing functions (only a small portion of the com-
plete program sequence is shown). Each component
subprogram requires its isolated tables, pertinent por-
tions of the control tables, and certain control subpro-
grams. Eighty programs must time-share the machine.
In general, some subprograms will operate uncondi-
tionally in a fixed sequence but at different frequen-
cies; other programs will operate on demand.

Large-Program Systems--Centralized versus
Decentralized

At this stage, we can consider the effect of program
size and integration on the design, testing, and oper-
ation of the program. To date, there have been several
programming systems of over 50,000 machine instruc-

Annals of ~he History of Computing, Volume 5, Number 4, October 1983 •

304

DESIGN

TESTING

OPERATIONALPLAN

MACHINE
SPECIFICATIONS

OPERATIONAL
SPECIFICATION!

PROGRAM
SPECIFICATIONS

CODING SPECIFICATIONS

I
I
!
!

I PARAMETER TESTING
(SPECIFICATIONS) !

ASSEMBLY TESTING
(SPECIFICATIONS)

SHAKEDOWN

SYSTEM EVALUATION

Figure 4. Program production. Production of a large-
program system proceeds from a general operational plan
through system evaluation; for example, assembly testing
verifies operational and program specifications.

tions prepared for business and scientific applications.
For the most part, however, these programs have been
what might be called large decentralized programs;
that is, the data-processing function has been divided
into a dozen or so parts, and the communication
between these parts has used blocks of data stored on
magnetic tape or punched cards.

Usually, the format and coding (i.e., the structure)
of these blocks can be unequivocally defined with
relative ease. This considerably simplifies the design
problem; after the blocks have been documented,
groups of programmers can be assigned to each part
with the assurance that little communication between
these programmers will be necessary. If the fullest
decentralization is desired, the component programs
will not share machine storage or machine time. (In
some applications, even different machines are used.)

Control of data processing in a decentralized system
is primarily manual. Tape reels and programs are
changed by computer operators (and even shipped to
remote locations). If an unexpected result develops,
an engineer or accountant or supervisor can print out
intermediate data and decide after the fact what
course should be taken. Efficient use of computer time
need not be closely monitored, since there are no real-
time constraints.

In testing or debugging one part of the system, data
produced by other parts are not required until the very
last moment that the system is put into operation.
(Probably many of the decentralized systems currently
in operation still contain many minor errors which
are being compensated for daily by users who have
become accustomed to these minor idiosyncrasies.)

The important point is that one can write a large
programming system and still maintain a high degree
of decentralization. Like most decentralizations, this
course produces a system that contains semantic in-
consistencies, ambiguities, and errors; operating inef-
ficiencies result from duplication and wasted motion.

Real-time control systems have presented the first
computer application where a very large program is
required to perform all assigned functions, and yet
where the disadvantages of decentralization cannot be
tolerated. Success or failure of the system usually
depends on efficient use of computer operating time.
Internal control of the real-time program must be
highly organized if efficient time and storage alloca-
tion are to be achieved, if the many in-out devices are
to be adequately sampled, and if automatic decisions
are to be made when unusual conditions develop
within the program or from the external environment.

The control program must be centralized. This com-
plicates design and coding since communication be-
tween component subprograms must have a high
bandwidth. The use of each of the thousands of central
table items must be coordinated between 100 or so
component subprograms. Organized, readable specifi-
cations for the design and coding phase accomplish
part of this task. Even then, only the most thorough
testing of the entire program ensures that system
threads have been carefully worked out, that incom-
patibilities are discovered, and that all contingencies
are accounted for.

Preparation of a System Program

Figure 4 indicates the nine phases used at the Lincoln
Laboratory in preparing a large system program. First,
an operationalplan defines broad design requirements
for the complete control system consisting of the
machine, the operator, and the system program. This
plan must be prepared jointly by the computer systems
engineers and the eventual user of the system.

From this plan, detailed operational specifications
are prepared that precisely define the "transfer func-
tion" of the control system. In this representation, the
computer, i t s terminal equipment, and the system
program are treated as a black box. On the other hand,
this description is sufficiently detailed that program-
mers can later prepare the system program using only

• Annals of the History of Computing, Volume 5, Number 4, October 1983

305

machine and operational specifications. The opera-
tional specifications correspond to the equations the
scientist gives a programmer; numerical analysis has
yet to be performed.

Program specifications outline implementation of
the operational black box by the system program.
These specifications organize the program into com-
ponent subprograms and tables, indicate main chan-
nels of program intracommunication, and specify time-
and storage-sharing of the machine by each subpro-
gram. Continuing the analogy, program specifications
correspond to a broad flowchart of the solution.

After the operational and program specifications
have been completed, detailed coding specifications are
prepared that define the transfer function of each
component subprogram in terms of the processing of
central and isolated items. From these specifications,
it is possible to predict precisely the output of the
subprogram for any configuration of input items. The
coding specifications also describe all storage tables. •

Each component subprogram is coded using the
coding specifications. Ideally, this phase would be a
simple mechanical translation; actually, detailed cod-
ing uncovers inconsistencies that require revisions in
the coding specifications (and occasionally in the op-
erational specifications).

After coding, each component subprogram is param-
eter tested on the machine by itself. This testing phase
uses an environment that simulates pertinent portions
of the system program. Each test performed during
this phase is documented in a set of test specifications
that detail the environment used and the outputs
obtained. In the figure, the dashed line indicates that
parameter testing is guided by the coding specifica-
tions instead of by the coded program; in other words,
a programmer must prove that he satisfied his speci-
fications, not that his program will perform as coded.
(Actually, test specifications for one subprogram can
be prepared in parallel with the coding.)

As parameter testing of component subprograms is
completed, the system program is gradually assembled
and tested using first simulated inputs and then live
data. For each test performed during this period, as-
sembly test specifications are prepared that indicate
test inputs and recorded outputs. Assembly testing
indicates that a system program satisfies the opera-
tional and program specifications.

When the completed program has been assembled,
it is tested in its operational environment during
shakedown. At the completion of this phase, the pro-
gram is ready for operation and evaluation.

Figure 5 indicates reasonable production costs that
might be expected in preparing a system program of

100,000 instructions. Considering the present tech-
nology of program preparation, our experience does

ENGINEERING C O M P U T E R PAPER
M A N P O W E R T IME O U T P U T

PHASE (MAN-YEARS) (HR) (PG)

Operational Plan ? 0 500

Operational Specs 30 0 2.500

Program Specs 10 O 500

Coding Specs 30 0 5,000

Coding 10 0 3.000

Parameter Testing 20 1,000 2,000

Assembly Testing 30 2,000 1,500

Shakedown ? ? ?

Evaluation ? ? ?

130 3,000 15,000

Minimum Production Time = 18 Months

Figure 5. Production cost. Using present techniques, the
production cost for a 100,000-instruction program can
easily require $55 per instruction.

not indicate that these are at all overly pessimistic
estimates. The estimates shown do not include train-
ing of programmers, preparation of ancillary pro-
grams, development of control-systems techniques, or
overhead supporting activity. They include only en-
gineering manpower required to produce the system
program. Let us assume an overhead factor of 100
percent (for supporting programs, management, etc.),
a cost of $15,000 per engineering man-year (including
overhead), and a cost of $500 per hour of computer
time (this is probably low since a control computer
contains considerable terminal equipment). Assuming
these factors, the cost of producing a 100,000-instruc-
tion system program comes to about $5,500,000 or $55
per machine instruction. In other words, the time and
cost required to prepare a system program are compa-
rable with the time and cost of building the computer
itself.

The Lincoln Utility System

In order to simplify the preparation and operation of
all programs, the Lincoln Laboratory has prepared a
set of service routines called the Lincoln Utility Sys-
tem. This system was designed to assist all program-
mers in using the machine; its present size--40,000
machine instructions--is indicative of the importance
attached to its role. The Lincoln system does not
provide automatic-coding facilities in the conven-
tional sense. Compared with systems that have been
developed at computing centers where scientific and
engineering calculations predominate, the Lincoln
system has concentrated more on systematizing com-
puter operation and program debugging than on de-
veloping automatic translation of programmer lan-

guage into machine language. Design of the system
followed these ground rules.

Annals of the History of Computing, Volume 5, Number 4, October 1983 -

306

PROGRAMMER'S
FORM

LIBRARY
FORM

ALPHANUMERIC,
SYMBOLICCARDS

LOCATIONDATA
RELATIVE-ADDRESSCOPY
COMMUNICATION TAGS
EDITOR REQUESTS

INPUT TAG STRUCTURE
WORD COOING
PROGRAM IDENTITY

MACHINE
FORM

I -~D-

!

BINARY COPY
(DRUMS, CORES)

OPTIONAL FOR
PRINTOUT

Figure 6. Program input process. With the Lincoln Utility
System, compiled programs are stored with the
programmer's full input structure; at read-in time, the
program is finally converted to machine binary language.
Even at this time the symbolic input structure is available
to other service routines.

1. At the Lincoln Laboratory, most programs are
prepared by relatively inexperienced programmers. As
many features as possible were included to help them,
yet no features were used that were so complicated
that only experienced programmers could use them
with facility. Also, programmers do not operate the
machine during debugging; they are required to plan
and document their operations beforehand.

2. Computer time for parameter testing, assembly
testing, and system shakedown is scarce. A large effort
has been devoted to systematizing and mechanizing
computer operations in order to use minimum com-
puter time.

3. The Lincoln Utility System includes several fea-
tures that assist programmers in communication and
documentation problems encountered during the de-
sign and testing phases of system program production.

4. The Lincoln Utility System contains extensive
debugging features including facilities for remote, flex-
ible card control of the computer and programs to be
tested.

5. Programs are prepared in machine language be-
cause automatic coding techniques developed to date
do not guarantee the efficient programming required
for a real-time system. (In retrospect, this ground rule
seems very shaky.)

6. The Lincoln Utility System, which is quite large,
has not been so centralized that its initial production
was delayed or that its revision and improvement are
difficult.

With the Lincoln Utility System, programmers code
in floating address using some subroutine requests,
particularly for card input and printed outputs. When

programs are compiled, they are stored on a magnetic-
tape library with their full input structure; that is, the
library copy contains program identity, a relative-
address binary copy, assigned memory locations, a
floating-address tag table, subroutine requests, etc.
Storage in this form has several advantages. First,
modifications to a program can be expressed in the
floating-address input structure; for recompilation,
the compiler does not require a complete program
copy. Second, all postmortems during and after pro-
gram operation are retranslated into input language;
programmers do not write programs in symbolic form
and receive fixed-address outputs. Third, major mod-
ifications in storage addresses and locations can be
made to a checked-out program at the time the pro-
gram is read into the machine because system design
parameters are stored in a central communication pool
(see Figure 6).

In order to debug programs, a "checker" facility is
used. This is a service program of 10,000 instructions
that allows the program to be tested--the checkee--
to be operated either interpretively or noninterpre-
tively under control of a pseudoprogram of executive
instructions. When the checkee is operated in the
interpretive mode, the checker automatically detects
loops, arithmetic alarms, illegal in-out sequences, and
illegal instructions. It stores a history of program
operation including branches, change-registers, and
in-out transfers. In the interpretive mode, the checkee
cannot cause a machine halt; when alarm conditions
are detected, the checker automatically generates spe-
cial outputs and moves on to another job. The checker
provides a wide variety of outputs including instruc-
tion-by-instruction printouts, dynamic change-regis-
ter printouts, and alarm printouts. Using the executive
instructions, a programmer can set machine registers
or memory registers to test values; he can start and
stop the checkee at selected locations; he can request
different outputs for different regions of the program;
he can request alarm outputs if the checkee transfers
control outside a fixed region or if a loop of more than
n cycles is performed; he can indicate the use of
different executive subprograms depending on the re-
sults of checkee operation; he can indicate which
portions of his program are to be performed nonin-
terpretively. From a programmer's point of view, the
checker is a special-purpose, checkout computer; it is
a stored-program machine with highly flexible input,
output, and control sections. (See Figure 7 for a sample
executive program.)

All utility programs are controlled by utility control
cards. Before a machine run, a deck of binary cards,
checker executive cards, etc., is prepared. The operator
places the cards in the reader, pushes one button, and
the rest of the computer operation is automatic.

• Annals of the History of Computing, Volume 5, Number 4, October 1983

307

A final feature of the utility system is the use of a
large communication pool of numerical parameters
shared by all programmers. Each programmer can
specify that constants or addresses in his program
should be taken from the pool. Numbers in this pool
are expressed symbolically by the programmer in both
his coding specifications and his coded copy; the ma-
chine supplies proper numerical values at read-in time.
These values may be unknown to the programmer and
even changed from day to day. For example, commu-
nication tags are used for extracting information (usu-
ally table items) that is packed into a full word. The
programmer need not know the exact location of the
word in memory, nor the position of the information
bits within the word. Communication tags are even
used to indicate the location in memory of the program
itself. A program-design group assigns specific numer-
ical values to the tag pool from day to day, in some
cases long after component subprograms have been
debugged. Since numerical values are assigned only
when the program is read into the machine, it is
possible for system designers to move programs and
tables within drum and core memory merely by chang-
ing constants in this pool. Only one central document
needs to be revised, and minimum testing on the
computer is required. Figure 8 indicates the allocation
of the 40,000 instructions in the utility system.

Testing

It is debatable whether a program of 100,000 instruc-
tions can ever be thoroughly t e s t e d i t h a t is, whether
the program can be shown to satisfy its specifications
under all operating conditions. Considering the size

C H E C K E R C A R D S / D E L A Y E D
0 1 N I 1 1 A 1 1 R
0 2 A L 0 7

l i 3 LP 2 5 ~ 4 L R 1 2 1 3
5 T R 1 2 1 3
6 B G 1 2 A 1 3 Z + 6
7 LP 4

0 8 L R 1 4 1 5 1 6
0 9 B G 1 4 A 1 6 L + 5
1 0 C C
11 QT

Figure 7. Sample executive program. The Lincoln checker
is controlled by pseudoinstructions. The executive program
shown indicates regions of the checkee to be performed
noninterpretively (01 NI), alternate executive instructions
in case of checkee alarm (02 AL), maximum-length loops
(03 LP), legal regions of checkee operation (04 LR),
checkee output mode (05 TR), etc.

P R O G R A M L E N G T H

Compiler 10,500
Read-in 1,300
Library Merge-Output 4,700
Checker 7,500
Master Tape Load 2,000
in-Out Editors 2,400
Communication Pool 4,100
Utility Control 3,000
Numeric Subroutines 1,000
Miscellaneous 4,000

40,500

Figure 8. Utility system. The Lincoln Utility System
requires over 40,000 instructions as indicated.

and complexity of a system program, it is certain that
the program will never be subjected to all possible
input conditions during its lifetime. For this reason,
one must accept the fact that testing will be sampling
only.

On the other hand, many sad experiences have
shown that the program-testing effort is seldom ade-
quate. When the program is delivered for operation,
its performance must be highly reliable because the
control system is a critical part of a much larger
environment of men and machines. One error per
100,000 operations of the entire program can easily be
intolerable.

As a result of facing this problem for some time at
the Lincoln Laboratory, the following principles have
evolved to govern our testing.

First, parameter testing (i.e., testing of individual
component subprograms in a simulated environment)
cannot be too thorough. This phase must discover all
errors internal to the program and its individual cod-
ing specifications. Even if parameter testing were per-
fect (which it never is!), many errors in system desig~
would remain to be discovered during subsequent as-
sembly testing.

Second, initial assembly testing should be per-
formed using completely simulated inputs. There are
several reasons. First, only in this way can all test
inputs be carefully controlled and all tests be repro-
ducible. Second, when errors are discovered with a
new program using live inputs, there will always be a
question whether the program or the machine is at
fault. Integration of the system program with terminal
equipment should not be attempted until the assem-
bled program has been well tested.

A third principle is that the testing facility used
during the assembly test phase must contain exten-
sive, flexible facilities for recording both system

Annals of the History of Computing, Volume 5, Number 4, October 1983 °

308

i LIVE
INPUTS ~ - C -

F - - i - ~
I
I LIVE

SIMULATION

I "
I INPUT

L _ _ _

I
i SYSTEM [
I ROGRAM I

f T T T

INITIAL I N T E R N A L EXTERNAL
CONDITIONS

OUTPUT

LIVE
i ~ OUTPUTS

I
I

• I
I

J
INSTRUMENTATION

F i g u r e 9. Test instrumentation. Proper testing of a control
system requires an automatic facility for simulating inputs
and monitoring outputs. With this facility, extensive
testing can be performed and outputs produced for either
diagnosis of system errors or verification of proper system
performance.

outputs and intermediate outputs (i.e., subprogram
intercommunications). Without this facility, rapid
and reliable diagnosis of system errors is impossible.
After a test has been conducted and errors found, it
should be possible to correct the error before the
program is put on the machine again.

The need for comprehensive simulated inputs and
recorded outputs can be satisfied only if the basic
design of the system program includes an instrumen-
tation facility. In the same way that marginal-check-
ing equipment has become an integral part of some
large computers, test instrumentation should be con-
sidered a permanent facility in a large program.

Figure 9 illustrates the role of test instrumentation
in a system program. Each of the live inputs can be
individually simulated; this allows simultaneous test-
ing with both live and simulated data. In addition, the
input instrumentation allows easy setting of initial
conditions for system memory; this feature is per-
formed by a special-purpose translation program that
converts alphanumeric card data into system tables.

System Program 100,000 Instructions

Utility Programs 40,000
Special Programs 10,000
Test Instrumentation 20,000
Operational Instrumentation 30,000

200,000 Instructions

F i g u r e 10. Production of a system program. Supporting
programs whose total size equals the system program may
be required to simplify production and testing of the
system program.

The output instrumentation "probes" both internal
data (for diagnosis) and external data (for simpler
verification).

One final principle should govern system-program
testing: All successful parameter and assembly tests
must be reproducible throughout the life of the system
program. These tests must be documented in test
specifications that detail the reasons for the tests,
required inputs, operating procedures, and expected
outputs.

The original reason for this requirement stemmed
from the problem of revising the program once it was
operational. The slightest modification to a program
can be successful under limited testing conditions and
yet still cause critical errors for other operations. Since
it is desirable to retest the program thoroughly after
each modification, a large battery of test inputs must
be available. We have discovered two other incidental
advantages of detailed test documentation. First, a
programmer's tests tend to be more organized and
more exhaustive if he must document them. Second,
if machine-versus-program reliability is ever ques-
tioned, retesting is possible. If a known program and
a known test fail, the machine is at fault.

Supporting Programs

The utility and test-instrumentation programs dis-
cussed are only part of the complete set of supporting
programs. In addition, special programs, which assist
preparation of the system program, are used to gen-
erate routine data blocks, perform special translation
of alphanumeric data into parameter tables, assemble
program-sequence and timing parameters, etc.

Operational instrumentation programs are used
during system shakedown and evaluation. They con-
tain simulation and recording facilities that are far
more realistic and operationally oriented than the test
instrumentation. System recorded data are analyzed
with a battery of data-reduction programs (Figure 10).

Documentation--Design and Revision

As indicated earlier, documentation of the system
program is an immense, expensive job. The output
will run to tens of thousands of pages of specifications,
charts, and listings. At the Lincoln Laboratory, these
currently include the following.

Operational specifications
Program specifications
Coding specifications
Detailed flowcharts
Coded program listings
Parameter test specifications

• Annals of the History of Computing, Volume 5, Number 4, October 1983

309

Assembly test specifications
System operating manuals
Program operating manuals

The need for this battery of documents is obvious.
The sysl;em and its program must be learned and used
by management, operational-design engineers, sys-
tem-operating personnel, training personnel, pro-
gram-design engineers, programmers, program-test
engineers, evaluation personnel, and, if more than one
system is maintained, on-site maintenance program-
mers. Each of these users has very different needs.

Consider the problem of revising the system once
the program is operational in the field. A minor change
in the operational specifications is proposed. First, the
cost and effects of this change must be evaluated in
terms of the program, the operators, and, often, the
machine. In order to make the change, several hundred
revisions may be required in the specifications. If the
change is approved, these documents must be changed,
operating manuals revised, and the program modified
and thoroughly tested. The wave of changes must be
coordinated smoothly.

Digital computers are often sold to management on
the basis of their programmed flexibility. We have
said, "If your doctrine or procedure changes, no messy,
expensive, time-consuming equipment changes will be
required." In reality, this is not true today. The cost
of the documentation mentioned is only a symptom
of the design-coordination problem in large systems.

How can we reduce this cost? Obviously, as we have
done already, by more extensive use of the computer.
(At the laboratory, we have partially gone in this
direction through the use of punched cards for storing
all central design data. Decks are easily revised, fed
into the system program, or listed for the user.) We
must systematize design, production, and documen-
tation both in the small and in the large. By "in the
small," I mean what is already being done in automatic

programming. Instead of an algebraic translator, we
need a unified "bookkeeping-logical-processing-alge-
braic translator." Before we get this, we will surely
need much more research on coding languages and
representations. Eventually, programming should be-
come a two-way conversation between the imprecise
human language and the precise, if unimaginative,
machine. The programmer will say, "Do this," and the
machine will answer, "OK, but what happens i f . . . ?"
The smallest gain of such a system would be the
elimination of the coding, parameter testing, and pa-
rameter test-specification phases. Unfortunately,
these phases represent only one quarter of the system
cost.

Documentation "in the large" poses a bigger chal-
lenge.

1. What integrated set of documents are required to
design and describe a large system?

2. What language should these documents use?
3. How should they be cross-referenced?
4. Can we eventually store them on magnetic tape

and let the computer analyze, print, and code?

Summary

The techniques that have been developed for auto-
matic programming over the past five years have
mostly aimed at simplifying the part of programming
that, at first glance, seems toughest--program input,
or conversion from programmer language to machine
code. As a result of progress in this area (and a growing
number of experienced programmers), we find that
large programs can now be produced; unfortunately,
they are difficult to test and document. If the newest
very-high-speed, large-memory computers are to be
fully utilized, we must develop automatic program-
ming procedures so that they allow cheap production
of highly reliable, easily revised, well-documented sys-
tem programs.

Annals of the History of Computing, Volume 5, Number 4, October 1983 °

310

