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Editor's Note 

When we all began to work on SAGE, we believed our 
own myths about software--that one can do anything 
with software on a general-purpose computer; that 
software is easy to write, test, and maintain; that it is 
easily replicated, doesn't wear out, and is not subject 
to transient errors. We had a lot to learn. 

AS Herb Benington discusses in the following 
paper, we had already successfully written quite a lot 
of software for experimental purposes. We were 
misled by the success we had had with capable 
engineers writing programs that were small enough 
for an individual to understand fully. With SAGE, we 
were faced with programs that were too large for one 
person to grasp entirely and also with the need to hire 
and train large numbers of people to become 
programmers--after all, there were only a handful of 
trained programmers in the whole world. We were 
faced with organizing and managing a whole new art. 

Bob Wieser (who led the software design and 
production effort at Lincoln) and his group decided 
with great wisdom to build the tools needed for such 
an endeavor instead of trying to do the whole job with 
the limited resources at hand. We paid a price--the 
schedule slipped by a year--t/ut the organization that 
was established really got on top of the job and 
stayed on top. 

Much of what Herb and others created for the SAGE 
job was forgotten and had to be relearned later by 
others when they faced similar problems. I confess to 
having a certain amount of purely human pleasure at 
watching other organizations suffer through the 
problems of building large programs--organizations 
that had been so critical of our own difficulties. 

One thing not to forget is the challenge of putting 
so large and complex a program into a limited 
computer capacity. The FSQ-7 was the largest 
machine we felt able to build in the early 1950s; its 
capacity is trivial by today's standards. One might 
think that with today's technology, SAGE-like software 
would be easier to build. Unfortunately, this seems not 
to be so. There is a kind of Parkinson's Law for 
software: it is infinitely expandable and swells up to 
exceed whatever capacity is provided for it. 
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Foreword 

The following paper is a description of the 
organization and techniques we used at MIT's 
Lincoln Laboratory in the mid-1950s to produce 
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programs for the SAGE air-defense system. The paper 
appeared a year before the announcement of SAGE; 
no mention was made of the specific application 
other than to indicate that the program was used in 
a large control system. The programming effort was 
very large--eventually, close to half a million 
computer instructions. About one-quarter of these 
instructions supported actual operational air-defense 
missions. The remainder were used to help generate 
programs, to test systems, to document the entire 
process, and to support those other managerial and 
analytic chores so essential to producing a good 
computer program. 

As far as I know, there was no comparable effort 
under way in the United States at the time, and 
none was started for several years. Highly complex 
programs were being written for a variety of 
mathematical, military, and intelligence applications, 
but these did not represent the concerted efforts of 
hundreds of people attempting to produce an 
integrated program with hundreds of thousands of 
instructions and highly related functionality. In a 
letter to me on April 23, 1981, Barry W. Boehm, 
director of software research and technology at 
TRW, says of the paper, "I wish I had known of it a 
couple of years ago when I wrote [a] paper indicating 
how many of today's software engineering hot topics 
had already been understood in 1961 in Bill Hosier's 
IRE article. Your paper predates much of that 
understanding by another five years." 

By chance, the paper was presented in 
Washington, D.C., in June 1956 at a symposium on 
advanced programming methods for digital 
computers, sponsored by the Navy Mathematical 
Computing Advisory Panel and the Office of Naval 
Research. The paper was given there because Wes 
Melahn (soon to become president of System 
Development Corporation, and now at the MITRE 
Corporation) was deeply concerned with the 
programming of an air-defense system, as well as 
with the theory and mathematics of advanced digital 
computing at universities. All the other papers at the 
symposium were presented from the perspective of 
either universities or the nascent computing 
industry. The hot topics were machine organization, 
development of algorithms, and the development of 
higher-order languages. The common goal was to 
produce instructions that cost less than $1 per line. 
The audience was somewhat chilled to hear that we 
could not do better than $50 per instruction in our 
particular effortmand that we were talking about 
tens of thousands of pages of documentation. 

I lost interest in the subject until several years ago, 
when I joined the MITRE Corporation and became 
interested in what had happened to data processing 

in the ensuing 20-25 years. I showed the paper to a 
number of colleagues, some of whom knew nothing 
of the SAGE development and some of whom had 
been deeply involved with it. Generally speaking, 
they were surprised that we had developed or used 
techniques with SAGE that today are considered 
essential to the effective production of large 
computer programs. (We did omit a number of 
important approaches, which I will say a little more 
about below.) 

It is easy for me to single out the one factor that  I 
think led to our relative success: we were all 
engineers and had been trained to organize our 
efforts along engineering lines. We had a need to 
rationalize the job; to define a system of 
documentation so that others would know what was 
being done; to define interfaces and police them 
carefully; to recognize that  things would not work 
well the first, second, or third time, and therefore 
that much independent testing was needed in 
successive phases; to create development tools that  
would help build products and test tools and to make 
sure they worked; to keep a record of everything that 
really went wrong and to see whether it really got 
fixed; and, most important, to have a chief engineer 
who was cognizant of these activities and responsible 
for orchestrating their interplay. In other words, as 
engineers, anything other than structured 
programming or a top-down approach would have 
been foreign to us. 

Between the early 1950s and the mid-1960s, 
thousands of computer programmers participated in 
the design, testing, installation, or maintenance of 
SAGE. They learned the system well, and as a result, 
the chances are reasonably high that on a large data- 
processing job in the 1970s you would find at least 
one person who had worked with the SAGE system. 
The initial SAGE prototype program slipped its initial 
schedule by about one year. After that, dozens of 
major modifications were installed at dozens of sites 
with slips of at most several weeks. The disciplined 
approach, which had started at MIT's  Lincoln 
Laboratory, persisted for over 15 years at SDC. Why 
is it, then, that  there are so many tales of computer- 
program projects whose schedule slippages were 
much greater than SAGE's and whose overruns are 
often horrendous? There are three major reasons. 
First, the industry went through a phase where we 

decided that computer programming and the 
computer programmer were "different." They could 
not work and would not prosper under the rigid 
climate of engineering management. Just  a few years 
ago, I heard with amazement the executive vice- 
president of one of our very largest information- 
system firms say, "Herb, you have to realize the 
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programmers are different; they have got to get 
special treatment." I almost ran out to sell his stock 
short, but then I discovered that his more realistic 
middle management had realized the failure of this 
nostalgic view of the computer programmer. 

Second, if anything, the pendulum has swung too 
far in the other direction. Many of our government- 
procurement documents act as if one produces 
software in the same way that one manufactures 
spacecraft or boots. When I got back into the 
computer programming business several years ago, 
I read a number of descriptions of top-down 
programming. The great majority seemed to espouse 
the following approach: we must write the initial top- 
down specification (for example, the A Spec), then 
the next one (typically, the B Spec), so we will know 
precisely what our objectives are before we produce 
one line of code. This attitude can be terribly 
misleading and dangerous. To stretch an analogy 
slightly, it is like saying that we must specify the 
characteristics of a rocket engine before measuring 
the burning properties of liquid hydrogen. Generally, 
software is the most complex component of a system. 
Twice as much software can improve the 
performance of a system by 1 percent or by 500 
percent. The percentage can only be determined if a 
great deal of detailed analysis (including coding) is 
undertaken to understand the "burning properties" 
of software. I do not mention it in the attached 
paper, but we undertook the programming only after 
we had assembled an experimental prototype of 
35,000 instructions of code that performed all of the 
bare-bone functions of air defense. Twenty people 
understood in detail the performance of those 35,000 
instructions; they knew what each module would do, 
they understood the interfaces, and they understood 
the performance requirements. People should be very 
cautious about writing top-down specs without 
having this detailed knowledge, so that the decision- 
maker who has the "requirement" can make the 
proper trade-offs between performance, cost, and 
risk. 

To underscore this point, the biggest mistake we 
made in producing the SAGE computer program was 
that we attempted to make too large a jump from the 
35,000 instructions we had operating on the much 
simpler Whirlwind I computer to the more than 
100,000 instructions on the much more powerful 
IBM SAGE computer. If I had it to do over again, I 
would have built a framework that  would have 
enabled us to handle 250,000 instructions, but I 
would have transliterated almost directly only the 
35,000 instructions we had in hand on this 
framework. Then I would have worked to test and 

evolve a system. I estimate that this evolving 
approach would have reduced our overall software 
development costs by 50 percent. 

The third reason that we keep seeing missed 
schedules was pointed out to me by the editor of one 
of our best computing journals, who says he has 
concluded that producing large computer programs is 
like raising a family. You ean observe your neighbors 
and see all of the successes and failures in their 
children. You can reflect on the experiences you had 
as one member of a large family. You can observe all 
the proper maxims of life and society. You can even 
study at length the experiences of many others who 
have raised families. In the final analysis, however, 
you have to start out and do it on your own, learn 
the unique options you have, see what unexpected 
problems arise, and, with reasonable luck, perform 
about as well as those who have been doing it 
forever. 

The latter observation may be reassuring to the 
new program manager, but there have been 
numerous significant advances in the techniques for 
producing large computer programs since we did the 
SAGE job over 25 years ago. A few that  strike me as 
most important are: 

• We now use higher-order languages in virtually all 
situations. 

• Almost all software development and unit testing 
are done interactively at consoles in a time- 
sharing mode. 

• We have developed a large family of tools that 
allow us to do much precise design and flow 
analysis before coding. (I still say that  we should 
use these techniques before we start finalizing our 
top-down requirements.) 

• We have developed organizational approaches that  
improve or at least guarantee the quality of the 
systems much earlier in the game. These include 
some of the structured languages, code reviews, 
walk-throughs, etc. 

For further progress, I would stress the following. 

• Since the SAGE effort, we have talked about the 
need to invest in tools that help produce 
programs--that is, in tools for coding, editing, 
testing and debugging, configuration management, 
consistency checking, structural analysis, etc. I 
believe too little effort has been spent on thinking 
through such tools and standardizing them so that 
they can become analogous to the relatively few 
higher-order languages that we use with great 
facility. 

• Finally, there remains a tremendous range and 
ability among computer programmers to do 
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different jobs. Some are good gem-cutters for any 
kind of stone. Some can play very special roles-- 
for example, where fastidious approaches are 
needed. Some are brilliant and articulate 
conceptualizers and leaders. Some should not be 
allowed near a computer. We must learn to 
recognize these types, to use them in their right 
place, and to set higher standards for not using 
people even though the market seems insatiable. 

--Herbert D. Benington 

Introduction 

At the 1955 Eastern Joint Computer Conference, Jay 
W. Forrester suggested that the evolution of electronic 
digital computers might be roughly divided into five- 
year periods, each period with its paramount signifi- 
cance. 

1945-1950 was the period of electronic design. From 
1950-1955, attention has been focused on the solution of 
scientific and engineering problems. 1955-1960 will 
encompass the upswing in the commercial data- 
processing applications . . . .  1960-1965 will probably 
mark the shift of major attention to the use of digital 
computers as the central elements in real-time control 
systems. 

With respect to this last period, Forrester continues: 

General purpose digital computers, as outlined in [recent 
news] releases, are to be the nerve centers for tying 
together the flow of information in our forthcoming new 
air defense system. This type of control system, we can 
assume, will develop further into a high-speed automatic 
control and regulation of future civilian air traffic . . . .  

[Or,] consider the chemical plants and oil 
refineries . . . .  In the last 30 years the automatic controls 
in an oil refinery have risen . . .  to some 15 percent of 
the investment in a refinery [or often about] $15,000 
worth of automatic controls. I believe we will see digital 
computers as controllers and monitors of operation in 
these plants to permit closer control, higher-speed 
chemical reactions, larger outputs, and a better product. 

During the past five years, we have seen develop- 
ments in automatic programming where the emphasis 
has paralleled Forrester's first three periods. We can 
compare the electronic-design phase with the devel- 
opment of basic programming techniques of transla- 
tion, compilation, and interpretive routines. Scientific 
and engineering calculations have been assisted by the 
PACT and A-2 compiling systems, and commercial data 
processing by BIOR and B-0 (to name but a few). More 
important, our colleagues who build computers have 
come to realize that  a computer is not useful until it 
has been programmed, and that  programming is an 

expensive job that requires both machine assistance 
and human sympathy. 

This paper looks ahead at some programming prob- 
lems that  are likely to arise during Forrester's 1960- 
1965 period of real-time control applications. At first 
glance, these are problems that will result from the 
need for very large, very efficient programs, where one 
program (consisting of over 100,000 machine instruc- 
tions) may be used in several machines during periods 
of months or years. On closer inspection, we realize 
that  these are problems that  must be faced whenever 
the need arises for the systematic preparation and 
operation of large, integrated programs, whether these 
programs are used for commercial processing, scien- 
tific calculation, or program preparation itself. 

During the past several years at the Lincoln Labo- 
ratory, several system programs containing over 
30,000 machine instructions each have been prepared. 
These programs are used for data processing and 
control in real-time systems. Production of these pro- 
grams is briefly described here, particularly in terms 
of cost and organization. Four problem areas are 
stressed. 

The first problem is computer operation. Computer 
time is at a premium when a large program is being 
prepared by relatively inexperienced programmers, 
when the machine and its terminal equipment are 
being shaken down, and when the machine-program 
system requires inordinate testing and debugging. The 
only answer is highly systematic, highly mechanized 
program preparation and computer operation. A Lin- 
coln Utility System of service routines containing 
40,000 instructions has been prepared to ease this 
problem. 

The second problem is program or system reliability. 
Needless to say, a large program is distressingly prone 
to all types of design and coding errors, including some 
very subtle ones. In spite of this tendency, it must be 
extremely reliable if it is to control effectively a system 
involving extensive equipment or manpower. This is 
true not only in a real-time system, but also in com- 
mercial applications unless equipment engineers can 
outvote lawyers. Reliability is also a major factor in 
the preparation of ambitious automatic programming 
systems~how many unreliable programs have been 
produced with supposedly well-tested compilers? 

Next, there is the problem of supporting programs. 
It has been the experience of the Lincoln Laboratory 
that  a system of service programs equal in size to the 
main system program must be maintained to support 
preparation, testing, and maintenance of the latter. 

Finally, there is the problem of documentation. In 
the early days of programming, you could call up the 
programmer if the machine stopped. You seldom mod- 
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Figure 1. Typical control system. In general, a typical 
control system uses automatic and manual elements. The 
automatic portion consists of a centralized digital 
computer, terminal equipment communicating with the 
environment, and a computer program incorporating 
system memory and standard operational procedures. 

ified another person's program--you wrote your own. 
Although present automatic programming technology 
has done much to make programs more communicable 
among programmers, there is a long way to go before 
we can take an integrated program of 100,000 instruc- 
tions and make it "public property" for the user, the 
coder, the tester, the evaluator, and the on-site main- 
tenance programmer. The only answer seems to be 
the documentation of the system on every level from 
sales brochures for management to instruction listings 
for maintenance engineers. Such documentation will 
require the development of new methods and new 
languages; more significantly, it will require a much 
more extensive use of the computer to assist in pro- 
gram production, documentation, and maintenance. 

At the last ONR symposium on automatic program- 
ming held two years ago, the most popular theme was 
simplifying program input through the use of symbolic 
inputs, machine compilation and generation, algebraic 
translation, etc. Very little was said about checkout or 
debugging, training, or operation. I suspect that for 
many the past two years have been a period of realizing 
that automatic programming concepts must go beyond 
the input process into these other areas. 

Large Programs for Control and Processing 

Before considering these problems in more detail, 
consider some rudiments of large systems and large 
programs. Figure 1 represents a broad flowchart of a 

typical control and processing system such as might 
be used for air-traffic control, industrial-plant control, 
or commercial applications. The area inside the 
dashed line represents the control system; the area 
outside is the environment to be controlled. In general, 
control consists of a manual and an automatic com- 
ponent. Manual in-out data could use voice phones or 
radios, teletypes, meters, etc. Typical automatic inputs 
and outputs might be teletype data or high-bandwidth 
digital data from or to analog-to-digital converters. 

The central control is a high-speed, general-pur- 
pose, digital machine that includes in-out terminal 
equipment and is controlled itself by the system pro- 
gram. Depending on the degree of system automation, 
manual control and processing might range anywhere 
from one half-awake computer operator (who will be 
awakened by an alarm) to a staff of several hundred 
operators and supervisors, each of whom must com- 
municate directly with the computer. The machine 
can signal the man through indicator lights and 
alarms, cathode-ray displays, or printed data; the man 
can respond with digital keyboard inputs or a variety 
of analog-to-digital devices. Periodically, the computer 
records data for later analysis of system performance. 

From the computer's point of view, then, the system 
consists of a wide variety of inputs and outputs, each 
with different data characteristics--peak rate, average 
rate, reliability, coding, etc. The system program must 
perform a wide variety of tasks. 

1. It must remember the state of environment. De- 
pending on the application, this may require from 
100,000 to many billions of bits of information stored 
on drums, tapes, or photographic plates. 

B O O K -  
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Figure 2. Static program organization. A system program 
of 100,000 instructions is organized into programming 
groups for input, output, etc. Each group contains several 
subprograms and requires both isolated and central tables. 
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2. It must sample each input either periodically or 
on demand, translate the data, test for reasonableness 
(usually in terms of the present state of the environ- 
ment), and either revise its memory content accord- 
ingly or transmit the data for further processing. 

3. It must, either periodically or on demand, calcu- 
late, monitor, correlate, predict, control, summarize, 
record, and decide. 

4. It :must encode and transmit outputs to all ter- 
minal devices. 

5. Finally, the program must control the frequency 
and sequence with which it performs each input, out- 
put, processing, or bookkeeping task. 

In order to give these features some physical mean- 
ing, let us attach rough numbers to a typical control 
problem. Figure 2 shows the organization of a typical 
100,000-instruction program that contains 80 compo- 
nent subprograms. In other words, each subfunction 
requires a logically distinct subprogram containing an 
average of 1250 instructions. In the figure, each box 
(e.g., I12) represents a subprogram; they are grouped 
as follows. 

1. There are four major input channels (e.g., 
punched cards, teletype, audio-bandwidth data link, 
and manual keyboards) designated by program groups 
I1 to I4. For each channel, several different types or 
sources of data are received by the control element. 
For example, I3 requires seven subprograms, I31 to 
I37. 

2. There are four major processing functions, which 
require a total of 24 component subprograms. In an 
air-traffic-control application, a typical process might 
be: first, review all aircraft landing at all airports; 
next, monitor these with respect to airspace assign- 
ment and sudden trouble situations; finally, prepare a 
revised space assignment. 

3. A third group of 15 subprograms are required for 
program bookkeeping. These programs coordinate 
communications between all other programs, monitor 
ystem load, and prepare summary data for output. 

4. The output makeup programs use three chan- 
n e l s - f o r  example, cathode-ray display, audio-band- 
width data link, and teletype. Fourteen subprograms 
are required to scan the system memory and make up 
properly coded output messages. 

5. Finally, seven control subprograms are required 
to control the timing, sequencing, and operation of all 
other subprograms. 

The 100,000 instructions represent standing opera- 
tional procedures for the system; they do not change 
as the system operates. The system memory, which is 
stored separately in system tables, can be broken down 
into two blocks: isolated tables, which store informa- 

COMPONENT 
PROGRAM 

ISOLATED 
TABLES 

CENTRAL 
TABLES 

CONTROL 

TIME 
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---n 0 no 0°0 0--- 
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Figure 3. Dynamic program operation. Component 
subprograms (Figure 2) time-share the control computer. 
Each component program requires isolated and central 
tables; a control program, which remains permanently in 
storage, directs sequence and frequency of operation of 
component subprograms. 

tion required by one program group only (e.g., I2), and 
central tables, which store data shared by two or more 
program groups. In measuring the complexity of the 
table structure, the total table memory required by 
tables is not nearly so important as the number of 
items. In this sense, an item is defined as one unique 
type of information. A single item may be represented 
once in the tables (e.g., "process I42 is being per- 
formed"), or the item may be represented 1 million 
times (e.g., "customer account number"). 

In the example given, 1000 items each are required 
for the isolated and central tables. For 10 of the central 
items, the program groups which set or use the item 
are shown; for example, the first item is used by I1, 
I4, O3, B2, C1, C2, P2, and P4. If 1000 such lines were 
drawn, the dot matrix would measure the communi- 
cations (and complexity) within the program. 

Figure 3 shows how the component subprograms 
time-share the machine to perform the control and 
processing functions (only a small portion of the com- 
plete program sequence is shown). Each component 
subprogram requires its isolated tables, pertinent por- 
tions of the control tables, and certain control subpro- 
grams. Eighty programs must time-share the machine. 
In general, some subprograms will operate uncondi- 
tionally in a fixed sequence but at different frequen- 
cies; other programs will operate on demand. 

Large-Program Systems--Centralized versus 
Decentralized 

At this stage, we can consider the effect of program 
size and integration on the design, testing, and oper- 
ation of the program. To date, there have been several 
programming systems of over 50,000 machine instruc- 
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Figure 4. Program production. Production of a large- 
program system proceeds from a general operational plan 
through system evaluation; for example, assembly testing 
verifies operational and program specifications. 

tions prepared for business and scientific applications. 
For the most part, however, these programs have been 
what might be called large decentralized programs; 
that is, the data-processing function has been divided 
into a dozen or so parts, and the communication 
between these parts has used blocks of data stored on 
magnetic tape or punched cards. 

Usually, the format and coding (i.e., the structure) 
of these blocks can be unequivocally defined with 
relative ease. This considerably simplifies the design 
problem; after the blocks have been documented, 
groups of programmers can be assigned to each part 
with the assurance that little communication between 
these programmers will be necessary. If the fullest 
decentralization is desired, the component programs 
will not share machine storage or machine time. (In 
some applications, even different machines are used.) 

Control of data processing in a decentralized system 
is primarily manual. Tape reels and programs are 
changed by computer operators (and even shipped to 
remote locations). If an unexpected result develops, 
an engineer or accountant or supervisor can print out 
intermediate data and decide after the fact what 
course should be taken. Efficient use of computer time 
need not be closely monitored, since there are no real- 
time constraints. 

In testing or debugging one part of the system, data 
produced by other parts are not required until the very 
last moment that the system is put into operation. 
(Probably many of the decentralized systems currently 
in operation still contain many minor errors which 
are being compensated for daily by users who have 
become accustomed to these minor idiosyncrasies.) 

The important point is that one can write a large 
programming system and still maintain a high degree 
of decentralization. Like most decentralizations, this 
course produces a system that contains semantic in- 
consistencies, ambiguities, and errors; operating inef- 
ficiencies result from duplication and wasted motion. 

Real-time control systems have presented the first 
computer application where a very large program is 
required to perform all assigned functions, and yet 
where the disadvantages of decentralization cannot be 
tolerated. Success or failure of the system usually 
depends on efficient use of computer operating time. 
Internal control of the real-time program must be 
highly organized if efficient time and storage alloca- 
tion are to be achieved, if the many in-out devices are 
to be adequately sampled, and if automatic decisions 
are to be made when unusual conditions develop 
within the program or from the external environment. 

The control program must be centralized. This com- 
plicates design and coding since communication be- 
tween component subprograms must have a high 
bandwidth. The use of each of the thousands of central 
table items must be coordinated between 100 or so 
component subprograms. Organized, readable specifi- 
cations for the design and coding phase accomplish 
part of this task. Even then, only the most thorough 
testing of the entire program ensures that system 
threads have been carefully worked out, that incom- 
patibilities are discovered, and that all contingencies 
are accounted for. 

Preparation of a System Program 

Figure 4 indicates the nine phases used at the Lincoln 
Laboratory in preparing a large system program. First, 
an operationalplan defines broad design requirements 
for the complete control system consisting of the 
machine, the operator, and the system program. This 
plan must be prepared jointly by the computer systems 
engineers and the eventual user of the system. 

From this plan, detailed operational specifications 
are prepared that precisely define the "transfer func- 
tion" of the control system. In this representation, the 
computer, i t s  terminal equipment, and the system 
program are treated as a black box. On the other hand, 
this description is sufficiently detailed that program- 
mers can later prepare the system program using only 
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machine and operational specifications. The opera- 
tional specifications correspond to the equations the 
scientist gives a programmer; numerical analysis has 
yet to be performed. 

Program specifications outline implementation of 
the operational black box by the system program. 
These specifications organize the program into com- 
ponent subprograms and tables, indicate main chan- 
nels of program intracommunication, and specify time- 
and storage-sharing of the machine by each subpro- 
gram. Continuing the analogy, program specifications 
correspond to a broad flowchart of the solution. 

After the operational and program specifications 
have been completed, detailed coding specifications are 
prepared that define the transfer function of each 
component subprogram in terms of the processing of 
central and isolated items. From these specifications, 
it is possible to predict precisely the output of the 
subprogram for any configuration of input items. The 
coding specifications also describe all storage tables. • 

Each component subprogram is coded using the 
coding specifications. Ideally, this phase would be a 
simple mechanical translation; actually, detailed cod- 
ing uncovers inconsistencies that require revisions in 
the coding specifications (and occasionally in the op- 
erational specifications). 

After coding, each component subprogram is param- 
eter tested on the machine by itself. This testing phase 
uses an environment that simulates pertinent portions 
of the system program. Each test performed during 
this phase is documented in a set of test specifications 
that detail the environment used and the outputs 
obtained. In the figure, the dashed line indicates that 
parameter testing is guided by the coding specifica- 
tions instead of by the coded program; in other words, 
a programmer must prove that he satisfied his speci- 
fications, not that his program will perform as coded. 
(Actually, test specifications for one subprogram can 
be prepared in parallel with the coding.) 

As parameter testing of component subprograms is 
completed, the system program is gradually assembled 
and tested using first simulated inputs and then live 
data. For each test performed during this period, as- 
sembly test specifications are prepared that indicate 
test inputs and recorded outputs. Assembly testing 
indicates that a system program satisfies the opera- 
tional and program specifications. 

When the completed program has been assembled, 
it is tested in its operational environment during 
shakedown. At the completion of this phase, the pro- 
gram is ready for operation and evaluation. 

Figure 5 indicates reasonable production costs that 
might be expected in preparing a system program of 

100,000 instructions. Considering the present tech- 
nology of program preparation, our experience does 

ENGINEERING C O M P U T E R  PAPER 
M A N P O W E R  T IME O U T P U T  

PHASE (MAN-YEARS)  (HR) (PG) 

Operational Plan ? 0 500 

Operational Specs 30 0 2.500 

Program Specs 10 O 500 

Coding Specs 30 0 5,000 

Coding 10 0 3.000 

Parameter Testing 20 1,000 2,000 

Assembly Testing 30 2,000 1,500 

Shakedown ? ? ? 

Evaluation ? ? ? 

130 3,000 15,000 

Minimum Production Time = 18 Months 

Figure 5. Production cost. Using present techniques, the 
production cost for a 100,000-instruction program can 
easily require $55 per instruction. 

not indicate that these are at all overly pessimistic 
estimates. The estimates shown do not include train- 
ing of programmers, preparation of ancillary pro- 
grams, development of control-systems techniques, or 
overhead supporting activity. They include only en- 
gineering manpower required to produce the system 
program. Let us assume an overhead factor of 100 
percent (for supporting programs, management, etc.), 
a cost of $15,000 per engineering man-year (including 
overhead), and a cost of $500 per hour of computer 
time (this is probably low since a control computer 
contains considerable terminal equipment). Assuming 
these factors, the cost of producing a 100,000-instruc- 
tion system program comes to about $5,500,000 or $55 
per machine instruction. In  other words, the time and 
cost required to prepare a system program are compa- 
rable with the time and cost of building the computer 
itself. 

The Lincoln Utility System 

In order to simplify the preparation and operation of 
all programs, the Lincoln Laboratory has prepared a 
set of service routines called the Lincoln Utility Sys- 
tem. This system was designed to assist all program- 
mers in using the machine; its present size--40,000 
machine instructions--is indicative of the importance 
attached to its role. The Lincoln system does not 
provide automatic-coding facilities in the conven- 
tional sense. Compared with systems that have been 
developed at computing centers where scientific and 
engineering calculations predominate, the Lincoln 
system has concentrated more on systematizing com- 
puter operation and program debugging than on de- 
veloping automatic translation of programmer lan- 

guage into machine language. Design of the system 
followed these ground rules. 
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PROGRAMMER'S 
FORM 

LIBRARY 
FORM 

ALPHANUMERIC, 
SYMBOLICCARDS 

LOCATIONDATA 
RELATIVE-ADDRESSCOPY 
COMMUNICATION TAGS 
EDITOR REQUESTS 

INPUT TAG STRUCTURE 
WORD COOING 
PROGRAM IDENTITY 

MACHINE 
FORM 

I -~D- 

! 

BINARY COPY 
(DRUMS, CORES) 

OPTIONAL FOR 
PRINTOUT 

Figure 6. Program input process. With the Lincoln Utility 
System, compiled programs are stored with the 
programmer's full input structure; at read-in time, the 
program is finally converted to machine binary language. 
Even at this time the symbolic input structure is available 
to other service routines. 

1. At the Lincoln Laboratory, most programs are 
prepared by relatively inexperienced programmers. As 
many features as possible were included to help them, 
yet no features were used that were so complicated 
that only experienced programmers could use them 
with facility. Also, programmers do not operate the 
machine during debugging; they are required to plan 
and document their operations beforehand. 

2. Computer time for parameter testing, assembly 
testing, and system shakedown is scarce. A large effort 
has been devoted to systematizing and mechanizing 
computer operations in order to use minimum com- 
puter time. 

3. The Lincoln Utility System includes several fea- 
tures that assist programmers in communication and 
documentation problems encountered during the de- 
sign and testing phases of system program production. 

4. The Lincoln Utility System contains extensive 
debugging features including facilities for remote, flex- 
ible card control of the computer and programs to be 
tested. 

5. Programs are prepared in machine language be- 
cause automatic coding techniques developed to date 
do not guarantee the efficient programming required 
for a real-time system. (In retrospect, this ground rule 
seems very shaky.) 

6. The Lincoln Utility System, which is quite large, 
has not been so centralized that its initial production 
was delayed or that its revision and improvement are 
difficult. 

With the Lincoln Utility System, programmers code 
in floating address using some subroutine requests, 
particularly for card input and printed outputs. When 

programs are compiled, they are stored on a magnetic- 
tape library with their full input structure; that is, the 
library copy contains program identity, a relative- 
address binary copy, assigned memory locations, a 
floating-address tag table, subroutine requests, etc. 
Storage in this form has several advantages. First, 
modifications to a program can be expressed in the 
floating-address input structure; for recompilation, 
the compiler does not require a complete program 
copy. Second, all postmortems during and after pro- 
gram operation are retranslated into input language; 
programmers do not write programs in symbolic form 
and receive fixed-address outputs. Third, major mod- 
ifications in storage addresses and locations can be 
made to a checked-out program at the time the pro- 
gram is read into the machine because system design 
parameters are stored in a central communication pool 
(see Figure 6). 

In order to debug programs, a "checker" facility is 
used. This is a service program of 10,000 instructions 
that allows the program to be tested--the checkee-- 
to be operated either interpretively or noninterpre- 
tively under control of a pseudoprogram of executive 
instructions. When the checkee is operated in the 
interpretive mode, the checker automatically detects 
loops, arithmetic alarms, illegal in-out sequences, and 
illegal instructions. It stores a history of program 
operation including branches, change-registers, and 
in-out transfers. In the interpretive mode, the checkee 
cannot cause a machine halt; when alarm conditions 
are detected, the checker automatically generates spe- 
cial outputs and moves on to another job. The checker 
provides a wide variety of outputs including instruc- 
tion-by-instruction printouts, dynamic change-regis- 
ter printouts, and alarm printouts. Using the executive 
instructions, a programmer can set machine registers 
or memory registers to test values; he can start and 
stop the checkee at selected locations; he can request 
different outputs for different regions of the program; 
he can request alarm outputs if the checkee transfers 
control outside a fixed region or if a loop of more than 
n cycles is performed; he can indicate the use of 
different executive subprograms depending on the re- 
sults of checkee operation; he can indicate which 
portions of his program are to be performed nonin- 
terpretively. From a programmer's point of view, the 
checker is a special-purpose, checkout computer; it is 
a stored-program machine with highly flexible input, 
output, and control sections. (See Figure 7 for a sample 
executive program.) 

All utility programs are controlled by utility control 
cards. Before a machine run, a deck of binary cards, 
checker executive cards, etc., is prepared. The operator 
places the cards in the reader, pushes one button, and 
the rest of the computer operation is automatic. 
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A final feature of the utility system is the use of a 
large communication pool of numerical parameters 
shared by all programmers. Each programmer can 
specify that constants or addresses in his program 
should be taken from the pool. Numbers in this pool 
are expressed symbolically by the programmer in both 
his coding specifications and his coded copy; the ma- 
chine supplies proper numerical values at read-in time. 
These values may be unknown to the programmer and 
even changed from day to day. For example, commu- 
nication tags are used for extracting information (usu- 
ally table items) that  is packed into a full word. The 
programmer need not know the exact location of the 
word in memory, nor the position of the information 
bits within the word. Communication tags are even 
used to indicate the location in memory of the program 
itself. A program-design group assigns specific numer- 
ical values to the tag pool from day to day, in some 
cases long after component subprograms have been 
debugged. Since numerical values are assigned only 
when the program is read into the machine, it is 
possible for system designers to move programs and 
tables within drum and core memory merely by chang- 
ing constants in this pool. Only one central document 
needs to be revised, and minimum testing on the 
computer is required. Figure 8 indicates the allocation 
of the 40,000 instructions in the utility system. 

Testing 

It is debatable whether a program of 100,000 instruc- 
tions can ever be thoroughly t e s t e d i t h a t  is, whether 
the program can be shown to satisfy its specifications 
under all operating conditions. Considering the size 

C H E C K E R  C A R D S / D E L A Y E D  
0 1  N I  1 1 A  1 1 R  
0 2  A L  0 7  

l i 3  LP 2 5  ~ 4  L R  1 2  1 3  
5 T R  1 2  1 3  
6 B G  1 2 A  1 3 Z + 6  
7 LP 4 

0 8  L R  1 4  1 5  1 6  
0 9  B G  1 4 A  1 6 L + 5  
1 0  C C  
11 QT 

Figure 7. Sample executive program. The Lincoln checker 
is controlled by pseudoinstructions. The executive program 
shown indicates regions of the checkee to be performed 
noninterpretively (01 NI), alternate executive instructions 
in case of checkee alarm (02 AL), maximum-length loops 
(03 LP), legal regions of checkee operation (04 LR), 
checkee output mode (05 TR), etc. 

P R O G R A M  L E N G T H  

Compiler 10,500 
Read-in 1,300 
Library Merge-Output 4,700 
Checker 7,500 
Master Tape Load 2,000 
in-Out Editors 2,400 
Communication Pool 4,100 
Utility Control 3,000 
Numeric Subroutines 1,000 
Miscellaneous 4,000 

40,500 

Figure 8. Utility system. The Lincoln Utility System 
requires over 40,000 instructions as indicated. 

and complexity of a system program, it is certain that  
the program will never be subjected to all possible 
input conditions during its lifetime. For this reason, 
one must accept the fact that  testing will be sampling 
only. 

On the other hand, many sad experiences have 
shown that the program-testing effort is seldom ade- 
quate. When the program is delivered for operation, 
its performance must be highly reliable because the 
control system is a critical part of a much larger 
environment of men and machines. One error per 
100,000 operations of the entire program can easily be 
intolerable. 

As a result of facing this problem for some time at 
the Lincoln Laboratory, the following principles have 
evolved to govern our testing. 

First, parameter testing (i.e., testing of individual 
component subprograms in a simulated environment) 
cannot be too thorough. This phase must discover all 
errors internal to the program and its individual cod- 
ing specifications. Even if parameter testing were per- 
fect (which it never is!), many errors in system desig~ 
would remain to be discovered during subsequent as- 
sembly testing. 

Second, initial assembly testing should be per- 
formed using completely simulated inputs. There are 
several reasons. First, only in this way can all test 
inputs be carefully controlled and all tests be repro- 
ducible. Second, when errors are discovered with a 
new program using live inputs, there will always be a 
question whether the program or the machine is at 
fault. Integration of the system program with terminal 
equipment should not be attempted until the assem- 
bled program has been well tested. 

A third principle is that the testing facility used 
during the assembly test phase must contain exten- 
sive, flexible facilities for recording both system 
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F i g u r e  9. Test instrumentation. Proper testing of a control 
system requires an automatic facility for simulating inputs 
and monitoring outputs. With this facility, extensive 
testing can be performed and outputs produced for either 
diagnosis of system errors or verification of proper system 
performance. 

outputs and intermediate outputs (i.e., subprogram 
intercommunications). Without this facility, rapid 
and reliable diagnosis of system errors is impossible. 
After a test has been conducted and errors found, it 
should be possible to correct the error before the 
program is put on the machine again. 

The need for comprehensive simulated inputs and 
recorded outputs can be satisfied only if the basic 
design of the system program includes an instrumen- 
tation facility. In the same way that marginal-check- 
ing equipment has become an integral part of some 
large computers, test instrumentation should be con- 
sidered a permanent facility in a large program. 

Figure 9 illustrates the role of test instrumentation 
in a system program. Each of the live inputs can be 
individually simulated; this allows simultaneous test- 
ing with both live and simulated data. In addition, the 
input instrumentation allows easy setting of initial 
conditions for system memory; this feature is per- 
formed by a special-purpose translation program that 
converts alphanumeric card data into system tables. 

System Program 100,000 Instructions 

Utility Programs 40,000 
Special Programs 10,000 
Test Instrumentation 20,000 
Operational Instrumentation 30,000 

200,000 Instructions 

F i g u r e  10. Production of a system program. Supporting 
programs whose total size equals the system program may 
be required to simplify production and testing of the 
system program. 

The output instrumentation "probes" both internal 
data (for diagnosis) and external data (for simpler 
verification). 

One final principle should govern system-program 
testing: All successful parameter and assembly tests 
must be reproducible throughout the life of the system 
program. These tests must be documented in test 
specifications that detail the reasons for the tests, 
required inputs, operating procedures, and expected 
outputs. 

The original reason for this requirement stemmed 
from the problem of revising the program once it was 
operational. The slightest modification to a program 
can be successful under limited testing conditions and 
yet still cause critical errors for other operations. Since 
it is desirable to retest the program thoroughly after 
each modification, a large battery of test inputs must 
be available. We have discovered two other incidental 
advantages of detailed test documentation. First, a 
programmer's tests tend to be more organized and 
more exhaustive if he must document them. Second, 
if machine-versus-program reliability is ever ques- 
tioned, retesting is possible. If a known program and 
a known test fail, the machine is at fault. 

Supporting Programs 

The utility and test-instrumentation programs dis- 
cussed are only part of the complete set of supporting 
programs. In addition, special programs, which assist 
preparation of the system program, are used to gen- 
erate routine data blocks, perform special translation 
of alphanumeric data into parameter tables, assemble 
program-sequence and timing parameters, etc. 

Operational instrumentation programs are used 
during system shakedown and evaluation. They con- 
tain simulation and recording facilities that are far 
more realistic and operationally oriented than the test 
instrumentation. System recorded data are analyzed 
with a battery of data-reduction programs (Figure 10). 

Documentation--Design and Revision 

As indicated earlier, documentation of the system 
program is an immense, expensive job. The output 
will run to tens of thousands of pages of specifications, 
charts, and listings. At the Lincoln Laboratory, these 
currently include the following. 

Operational specifications 
Program specifications 
Coding specifications 
Detailed flowcharts 
Coded program listings 
Parameter test specifications 
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Assembly test specifications 
System operating manuals 
Program operating manuals 

The need for this battery of documents is obvious. 
The sysl;em and its program must be learned and used 
by management, operational-design engineers, sys- 
tem-operating personnel, training personnel, pro- 
gram-design engineers, programmers, program-test 
engineers, evaluation personnel, and, if more than one 
system is maintained, on-site maintenance program- 
mers. Each of these users has very different needs. 

Consider the problem of revising the system once 
the program is operational in the field. A minor change 
in the operational specifications is proposed. First, the 
cost and effects of this change must be evaluated in 
terms of the program, the operators, and, often, the 
machine. In order to make the change, several hundred 
revisions may be required in the specifications. If the 
change is approved, these documents must be changed, 
operating manuals revised, and the program modified 
and thoroughly tested. The wave of changes must be 
coordinated smoothly. 

Digital computers are often sold to management on 
the basis of their programmed flexibility. We have 
said, "If your doctrine or procedure changes, no messy, 
expensive, time-consuming equipment changes will be 
required." In reality, this is not true today. The cost 
of the documentation mentioned is only a symptom 
of the design-coordination problem in large systems. 

How can we reduce this cost? Obviously, as we have 
done already, by more extensive use of the computer. 
(At the laboratory, we have partially gone in this 
direction through the use of punched cards for storing 
all central design data. Decks are easily revised, fed 
into the system program, or listed for the user.) We 
must systematize design, production, and documen- 
tation both in the small and in the large. By "in the 
small," I mean what is already being done in automatic 

programming. Instead of an algebraic translator, we 
need a unified "bookkeeping-logical-processing-alge- 
braic translator." Before we get this, we will surely 
need much more research on coding languages and 
representations. Eventually, programming should be- 
come a two-way conversation between the imprecise 
human language and the precise, if unimaginative, 
machine. The programmer will say, "Do this," and the 
machine will answer, "OK, but what happens i f . . .  ?" 
The smallest gain of such a system would be the 
elimination of the coding, parameter testing, and pa- 
rameter test-specification phases. Unfortunately, 
these phases represent only one quarter of the system 
cost. 

Documentation "in the large" poses a bigger chal- 
lenge. 

1. What integrated set of documents are required to 
design and describe a large system? 

2. What language should these documents use? 
3. How should they be cross-referenced? 
4. Can we eventually store them on magnetic tape 

and let the computer analyze, print, and code? 

Summary 

The techniques that  have been developed for auto- 
matic programming over the past five years have 
mostly aimed at simplifying the part of programming 
that, at first glance, seems toughest--program input, 
or conversion from programmer language to machine 
code. As a result of progress in this area (and a growing 
number of experienced programmers), we find that  
large programs can now be produced; unfortunately, 
they are difficult to test and document. If the newest 
very-high-speed, large-memory computers are to be 
fully utilized, we must develop automatic program- 
ming procedures so that they allow cheap production 
of highly reliable, easily revised, well-documented sys- 
tem programs. 
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