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Earned duration management (EDM) is a methodology for project schedule management (PSM) that can
be considered an alternative to earned value management (EVM). EDM provides an estimation of devia-
tions in schedule and a final project duration estimation. There is a key difference between EDM and
EVM: In EDM, the value of activities is expressed as work periods; whereas in EVM, value is expressed
in terms of cost. In this paper, we present how EDM can be applied to monitor and control stochastic pro-
jects. To explain the methodology, we use a real case study with a project that presents a high level of
uncertainty and activities with random durations. We analyze the usability of this approach according
to the activities network topology and compare the EVM and earned schedule methodology (ESM) for
PSM.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Monitoring and control activities are a crucial aspect of project
management throughout a project’s life cycle [1,2]. Earned value
management (EVM) has been the most widely used tool for project
control since 1967 [3]. The US Department of Defense (DoD)
approved a directive that includes key EVM parameters among
the 35 criteria that should be met by any industrial firm when
applying some kind of cost-reimbursable or incentive contract for
major system procurements. The US DoD provided an EVM system
(EVMS), which was initially and inflexibly applied for decades by
the US Government; later, it was also adopted in other countries
such as Australia, Canada, and Sweden. The key point in adopting
EVM was to prevent cost growth risk when the government is
the final responsible party for budget overruns. EVM was initially
adopted for monitoring and controlling project costs.

A detailed explanation of EVM can be found in Refs. [3–5] as
well as in the extensive list of references [6–8]. Lipke [9] proposed
the earned schedule (ES) with EVM parameters to provide new
metrics for schedule control. Pajares and López-Paredes [10] con-
sidered the inherent uncertainty of activities and defined the
schedule control index (SCoI) and cost control index (CCoI) indica-
tors to overcome some limitations in ES and EVM for schedule con-
trol. Acebes et al. [11] went one step further and described a
graphical framework for integrating cost, schedule, and risk
monitoring.

Khamooshi and Golafshani [12] defined an alternative frame-
work to EVM, known as the earned duration management (EDM)
methodology. EDM is intended for monitoring and controlling
the project schedule by redefining EVM parameters in work-
period terms rather than cost measurements [13]. Comparisons
between EVM and EDM frameworks are a fruitful field for
researchers interested in project control and the accurate forecast-
ing of final costs and duration. De Andrade and Vanhoucke [14]
presented the results they obtained from comparing EDM and
EVM in the provision of accurate project duration forecasting.
Using data from real projects, they concluded that EDM provided
better results when using the EDM project regularity indicator.

Our approach to improve the accuracy of both project control
and final duration forecasting is to consider inherent aleatoric
uncertainty when estimating the work periods for each activity
in the planning stage. The starting point is the process described
by Acebes et al. [15] to improve project monitoring and control
within the EVM framework. We adapted this process to the EDM
in order to acquire better knowledge of any deviations from the
planned schedule at any intermediate control milestone, as well
as the final project duration estimation. With the results obtained
in this way, and by taking data from real projects (with significant
differences in network topology), we compared EVM and ES using
the mean absolute percentage error (MAPE).

This paper is structured as follows. In Section 2, we present a
bibliographic review of the most relevant contributions for project
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monitoring and control by the EVMmethodology. We then present
the research process followed in this paper. We describe stochastic
earned duration analysis and project control techniques and offer a
case study to better illustrate the process of applying the method-
ology to a real project. Next, we compare the use of EVM and
earned schedule methodology (ESM) for projects with different
network topologies. Finally, we present the main conclusions and
results.
2. Background

Project monitoring and control processes are transcendental
functions in project management [1,16]. They are designed to take
information from the status project execution and compare it with
the base scenario. Analyzing possible planning variance can be use-
ful in the decision-making process of adopting potential corrective
measures [17,18].

This section provides a general summary of the research con-
ducted on project control methods and on the different statistical
algorithms that we use in our proposed methodology. First, we dis-
cuss project control using the EVM methodology. Second, we
examine project control using the EDM. In the last section, we
describe the different statistical techniques that are applied to
the classification and regression problems.
2.1. Progress monitoring: EVM

Rozenes et al. [19] conducted a literature review to provide an
overview of the nature and importance of project control, including
factors that determine the project success and control systems
analysis. The most recent literature focuses mainly on EVM as
the most widely used fundamental tool for project control,
specifically when monitoring cost [20] and controlling time based
on the ES concept [9].

Willems and Vanhoucke [21] classified the bibliography that
relates project control to EVM methodology. One of the classifica-
tions conducted in their work was based on the methodology that
has been applied to problem solving. Another classification that
Willems and Vanhoucke [21] included in their work was estab-
lished in accordance with the degree of uncertainty inherent to
each project: deterministic, stochastic, and fuzzy. Thus, there are
analyses whose calculations are based on average or expected val-
ues that are labeled as deterministic. Some analyses consider the
uncertainty of project activities as probability distribution func-
tions, which are labeled as stochastic. The result consists of distri-
butions and confidence intervals connected to estimates. Finally,
there are fuzzy analyses that take a probabilistic approach in which
data are not only imprecise, but also vague. Hence, they can be rep-
resented by fuzzy numbers and manipulated by fuzzy techniques
[22].

The literature on deterministic and stochastic analyses is very
extensive. Pellerin and Perrier [1] compiled works dealing with
methods, techniques, and tools for project planning and control
by paying special attention to the EVM in the project control sec-
tion. Hazır [18] conducted a similar study by identifying analytical
models and decision support tools for project control. He included
the work by Pajares and López-Paredes [10], who introduced a new
procedure for project control in an environment with uncertainty
(the procedure extended in Ref. [11]). Colin and Vanhoucke [23]
focused their study on process control during project execution
and compared the efficiency of different control methods using
EVM. Vanhoucke [2] also reviewed works on tolerance limits in
process control. All the articles cited here include many others that
have been reviewed, compared, and analyzed, providing us with a
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measure of the importance attached to the EVM in relation to pro-
ject control [6,23–31].

As for research about the estimation of project duration upon its
completion, an extensive bibliography exists [32–34]. Batselier and
Vanhoucke [33] evaluated the accuracy of different forecast tech-
niques based on EVM. Wauters and Vanhoucke [35] focused on
the stability of the results offered by EVM in comparison with com-
putational experiments. Batselier and Vanhoucke [36] assessed dif-
ferent prediction methods using EVM applied to real projects to
compare the obtained results. Finally, although the compilation
can be widely extended, we mention the work by Wauters and
Vanhoucke [37], who reviewed different methods that incorporate
artificial intelligence for forecasting the final project duration.

Both fuzzy techniques and EVM have been widely used by sev-
eral authors. Naeni et al. [38] present a fuzzy-based earned value
model, in which they incorporate uncertainty from people’s judge-
ments and transform it into linguistic terms. Mortaji et al. [39]
employed EVM in vagueness environments using left–right (L–R)
fuzzy numbers. Salari et al. [40] used fuzzy techniques with EVM
in financial aspects of the cost control system. Salari et al. [41]
applied EVM to predict future project performance through statis-
tical modeling. Due to the vagueness and imprecision associated
with the data from real case projects, the time and cost behavior
of each option were presumed to be fuzzy numbers. Similarly,
other authors have used fuzzy techniques with EVM to improve
a project’s future performance by forecasting [41–44].

It should be noted that the fuzzy technique is based on the use
of linguistic terms when assigning a specific value to a variable is
impossible. Above all, such variables could be considered ambigu-
ous, imprecise, or vague. Something similar occurs with the grey
system theory [45], which can be applied together with the EVM
[46]. Although these two methodologies (fuzzy and grey system
techniques) work with uncertainty, they can be differentiated from
stochastic analyses, in which project activities are perfectly defined
for their probability distribution functions.

With time, continuous innovations have been proposed in the
methodology that have attempted to improve both future predic-
tions and project control at each monitoring time. All these refine-
ments to the methodology, in both research branches, are part of
attempts to obtain more effective results with fewer errors (in both
project control and forecast).

2.2. Progress monitoring: EDM

Khamooshi and Golafshani [12] introduced the EDM concept. To
remove the correlation between project cost and duration in the
EVM methodology, they proposed a methodology that measures
the ‘‘work” carried out during each period. The control of project
duration, as well as the forecast of its final duration at each control
time, are accomplished in duration terms independently of the cost
of each activity.

Although the ES technique proposed in Ref. [9] uses time units
for the control of the project timeframe, the calculation of this
parameter (i.e., ES) is based on cost units. By using EDM, the calcu-
lations for project duration and cost become independent, and
each employs the units corresponding to its magnitude. Since the
novel EDM was first introduced, several studies about it have
appeared. De Andrade and Vanhoucke [14] performed a compara-
tive analysis between time predictions using ES and EDM.
Khamooshi and Abdi [47] applied the EDM to predict project dura-
tion with exponential smoothing techniques. Ghanbari et al.
[48,49] applied fuzzy techniques to solve uncertainty problems
by applying the EDM. The literature involves the use of fuzzy tech-
niques in conjunction with EDM [48,50–52].

De Andrade et al. [13] used real projects to compare project
duration estimation results according to both EDM and EVM.



y This analysis can be extended by adding new algorithms (i.e., statistical or
machine-learning techniques).
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Yousefi et al. [53] controlled the project by applying statistical con-
trol charts based on the indices provided by the EDMmethodology.

Since the concepts and indicators provided by the EDM were
first introduced, we have observed that many innovations are
related to them; thus, we aim to use this methodology to improve
project monitoring and control, as well as forecasts of duration and
final cost. In this paper, we present a methodology based on EDM
regarding project control that makes predictions of a project’s final
duration by incorporating uncertainty into project activities
through a probability distribution function.

2.3. Algorithms for classification and regression problems

This section explains the basic concepts of the statistical analy-
sis used herein, as we briefly indicate what we mean by anomaly
detection, classification, and regression. We also briefly describe
the different algorithms used for these techniques.

Novelty detection consists of identifying observations that
derive from, or are inconsistent with, the sample data in which
they occur [54,55]. The idea is to build a model that describes
the normal project behavior range. This normality model is used
as a test by comparing it with the actual project development.

The methodologies used for novelty detection focus on estimat-
ing the generative probability density function from the data
drawn from the simulation data. This function is used to calculate
the probability of a new observation (the actual project) having
been generated by the distribution [54–57]. We applied the kde2d
function of the ‘‘MASS” package of R software for kernel density
estimations with radial kernels [58].

Analyzing the data as a classification problem allows us to esti-
mate the probability of a project finishing on time. A classification
problem aims to predict a quantitative variable, which is often
referred to as a response, outcome, or dependent variable with a
set of qualitative and/or quantitative variables called predictors,
independent variables, or simply variables.

Analyzing the data as a regression problem allows us to quan-
tify any project lag. A regression problem involves predicting a
qualitative, qualitative, or continuous variable, also called a
response, output, or independent variable, as in the classification
problem, with a set of qualitative and/or quantitative variables,
the predictors.

We now go on to explain the operation of all the algorithms that
we use in our model, which are all included in the R software pack-
age ‘‘caret” [59,60]. The linear discriminant analysis (LDA) is a
dimensionality reduction technique. It is used as a pre-processing
step in machine learning and pattern classification applications.
The goal of LDA is to project features in a higher dimensional space
onto a lower-dimensional space to avoid the dimensionality curse
and to reduce the required resources and dimensional costs
[61,62].

A classification and regression tree (CART) is a predictive model
that explains how an outcome variable’s values can be predicted
based on other values. CART output is a decision tree in which each
fork is split into a predictor variable and each end node contains a
prediction for the outcome variable [63]. K-nearest-neighbor (kNN)
is a supervised instance-based machine learning algorithm. It can
be used to classify new samples (discrete values) or to predict
(regression and continuous values). It essentially classifies values
by finding the ‘‘most similar” (in terms of closeness) data points
learned in the training stage and by making assumptions about
the new points based on that classification [64].

Support vector machines (SVMs) are a set of supervised learning
algorithms. These methods are usually related to classification and
regression problems. With a set of training examples (of samples),
we can label classes and train an SVM to build a model that pre-
dicts the class of a new sample. Intuitively, the SVM is a model that
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represents the sample points in space by separating classes into
two spaces that are as wide as possible by defining a separating
hyperplane as the vector between the two points of the two classes
that are closer to one another, known as the support vector. When
the new samples are put in correspondence with this model,
depending on the spaces in which they belong, they can be classi-
fied as one class or the other [65]. A random forest (RF) is a combi-
nation of predictor trees, where each tree depends on the values of
an independently tested random vector with the same distribution
for each tree. It is a substantial bagging modification that builds a
large collection of uncorrelated trees and then averages them [66].
Linear regression (LR) is a linear approach that is followed to model
the relation between a scalar response and one explanatory vari-
able or more (also known as dependent and independent vari-
ables). The case of one explanatory variable is called simple LR;
the process is called multiple LR if there is more than one [67].
3. Stochastic earned duration methodology (SEDM)

Acebes et al. [15] describe a methodology for project monitor-
ing and project control called stochastic earned value analysis. Its
starting point is to generate a wide range of projects by means of
a Monte Carlo simulation that are compatible with the planned
project’s specifications. The analysis at each control milestone
depends on the statistical techniques that are followed to study
the project—that is, anomaly detection algorithms, and classifica-
tion and regression problemsy. The ultimate aim is to provide pro-
ject managers with a decision support system to detect abnormal
deviations from the planned project and to estimate the probability
of overruns, as well as the expected time and work-periods until the
project ends.
3.1. Earned duration management

EDM is a methodology that creates duration-based performance
metrics and aims to decouple schedule and cost performance mea-
sures completely. EDM focuses on the exclusive usage of time-
based data for the generation of physical progress indicators.
Rather than considering the value of project activities in monetary
units, the value of activities is expressed as work periods. This is
the key difference among EDM, EVM, and ES, as the latter two
are based on the costs of activities.

With this information, in the planning phase, we can create the
curves displayed in Fig. 1: the total planned duration (TPD), total
earned duration (TED), and total actual duration (TAD) [12]. The
analogy with those used in the EVM is evident:① TPD is the cumu-
lative number of planned working periods throughout the project;
② TAD comprises all the working periods spent prior and up to the
actual duration (AD); ③ TED is the number of working periods
earned by AD (i.e., the value of the performed work (e.g., workdays)
expressed as a proportion of the planned work).

As with the EVM, the TED value equals the final planned TPD
value at the end of the project.

By definition, each planned day of every activity has a weight of
1, regardless of the effort, resources, or costs involved in perform-
ing it. The AD of each activity i (ADi) is the number of working days
that it took to complete that activity. To calculate the value of the
daily earned duration (ED) for every activity effectively performed
on a working day, the planned duration (PD) of an activity i (PDi)
must be divided by its ADi. The sum of the daily EDs of a certain
activity i defines the ED of that activity (EDi). The ED of a project



Fig. 1. Conceptual EDM graph based on Ref. [12]. ED(t): the earned duration (ED)
corresponding to the control period; AD: actual duration; BPD: baseline planned
duration; AFD: actual finish date.
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calculated during a control period (TED) corresponds to the sum of
the EDi’s of all the project activities.

Fig. 1 represents a conceptual EDM graph based on Ref. [12]—an
S-curve that depicts the total accumulated duration for the
planned (and actual) progress of activities on each working day
for a project plotted against time. The magnitude represented on
the y-axis in this methodology is the accumulated sum of the
planned time units that correspond to the activities performed
during that period. Therefore, the graph takes on a theoretical ‘‘S”
form, with a greater or lesser approximation to an ‘‘S” curve
depending on each project’s scheduling.

AD is the control milestone point that we wish to use to monitor
the project. It is the equivalent to the actual time in EVM/ES. At this
time, we know the TED, and we can calculate the ED(t) on the TPD
curve. Eq. (1) is the analytical expression used to calculate ED(t):

ED tð Þ ¼ ADþ TED� TPDt

TPDtþ1 � TPDt
ð1Þ

where ED(t) is the ED corresponding to the control period. Note that
t and t + 1 are two consecutive time periods that belong to the TPD
curve such that t < ED(t) < t + 1 and t + 1 – t = 1 (if we consider cal-
endar unitary).

The calculation of ED(t) corresponds to the resolution of a linear
interpolation, where the TPD curve approaches a straight line
between time instants t and t + 1 (which are known). This calcula-
tion is independent of the TPD curve shape if the curve shape takes
an S-curve form or if the representation is linear.
Fig. 2. Monte Carlo simulation: planned project (TPD), project underway (TEDAD

and TADAD), simulated project j (TEDADj
and TADADj

), and the BPD.
3.2. Stochastic earned duration analysis

Our analysis is performed in two stages. First, in the planning
phase, we collect the information available about the aleatoric
uncertainty of the activities (i.e., the type of probability distribu-
tion function and the characteristic parameters such as the
expected value, standard deviation, most optimistic end date, most
likely end date, most pessimistic end date, etc.). We apply the
Monte Carlo simulation to generate a large population of simulated
projects. These ‘‘instances” of the approved planned project are the
universe of simulated planned projects that are compatible with
the available information (i.e., the network topology and the uncer-
tainty of the activities). The type of distribution function assigned
to each activity does not affect the representation of the indicators
illustrated in Fig. 1 (TPD, TAD, and TED), as the expected values of
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the timework units of the activities are used to represent the indi-
cators. The type of distribution function has an impact on the val-
ues assigned to activities when applying the Monte Carlo
simulation. Therefore, this would impact the actual situation of
the project that is underway in comparison with the planned pro-
ject at each control point, as will be seen, for example, in Section 4.1
below.

In the second phase, we use advanced statistical techniques at
each control milestone during the project. Our goal is to answer
the questions that project managers ask: Do we have to take cor-
rective action or can the observed deviations from the planned pro-
ject be considered to be in accordance with the expected behavior?
Can we obtain an accurate estimation of the final time when the
project ends?

In the following subsections, we provide a detailed explanation
of the methodology, along with a flow diagram of the whole pro-
cess at the end of this section.

3.2.1. Planning phase: Monte Carlo simulation
In the project planning phase, we have information about the

activities that make up the project—namely, the sequencing, dura-
tion, and aleatoric uncertainty that defines them. By using the most
probable duration for the activities and applying EDM, we can rep-
resent the TPD curve, as shown in Fig. 2.

Because the duration of the project activities contains aleatoric
uncertainty, we can apply the Monte Carlo simulation to the pro-
ject under study. As a result, we obtain a large number N of possi-
ble simulated projects that are compatible with the uncertainty
defined for each activity. Each of these simulated projects repre-
sents a possible project execution, because every activity was ran-
domly assigned a duration following the distribution function with
which it was programmed.

For each of these simulated projects j, we can construct its TADj

curve of real duration (RD); we can also calculate its corresponding
TEDj curve of ED. In Fig. 2, we display the planned project (TPD),
the project underway at t = AD, and only one simulated project
instance (j).

As with the EVM, where, by definition, PV = EV at the end of the
project (independently of the project being delayed or continuing),
in the EDM at the end of the project, TED = TPD (TPDBPD = TEDAFD)
(where PV is planned value; EV is earned value; BPD is baseline
planned duration; and AFD means actual finish date). Therefore,
all the TEDj curves of each simulated project will take the same
value at the end of the project, which will coincide with the TPD
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value at the end of the project (TPDBPD = TEDjAFDj
) (Fig. 2). During

the proposed process, all the projects that we obtain after applying
the Monte Carlo simulation will have the same planned project in
common (the same TPD curve). Therefore, if TEDAD corresponds to
a percentage of the final value of TPD, the TEDADj

of any simulated
project will coincide with the previous value because, if we apply
the same percentage to the identical final value (TEDj = TPD), the
TED value of each curve will coincide (TEDAD = TEDADj

).
At each control milestone AD, we know the pair (TEDAD, TADAD)

for the project underway. There are N simulated projects, and we
can calculate in ADj the triad (ADj, TEDADj

, TADADj
) from TEDAD for

each simulated project. We calculate in AD the project progress
index (PPI) for the project that is underway (Eq. (2)).

PPI ¼ EDðtÞ
BPD

ð2Þ

where BPD is the planned finish date. ED(t) is equal for the project
underway and for every simulated project j because it is obtained
during the project planned with TEDAD, which is the same for each
simulated project TEDADj

.
From the N simulated projects, we can obtain a point cloud of

pairs (ADj, TADADj
) for this PPI value. We use these data to obtain

the statistical properties for the project at any control milestone
and to know if project deviations are a consequence of the
expected variability. We then apply advanced statistical tech-
niques to these data, which provide the benchmark for real project
monitoring and control (classification problem), and for forecasting
the expected duration (regression problem).
3.2.2. Control phase: Project control and predicting final duration
Following the analysis performed in Ref. [15], we apply the

techniques developed for anomaly detection to study the project
deviations. The ultimate purpose is to build a model that describes
the project’s ‘‘normal” range of behavior. We need to aggregate all
the point clouds (ADj, TADADj

) obtained previously for each PPI
value to gain a general density function (Fig. 3). We use function
kde2d, which is included in R ‘‘MASS” [58]. At each control mile-
stone of the real project that is underway (AD, TADAD), we can cal-
culate the probability that falls within the expected variability
(Fig. 4).

To estimate the probability of the project finishing on time, we
analyze data as a classification problem; we use the data from the
N simulated projects. The algorithms use a proportion of the data
for model training, and the rest is used for the trial. In the control
milestone AD, we know the values (ADj, TADADj

) for each simulated
project and whether the project will finish on time or not. We use
the R ‘‘caret” software package [59,60] first to cross-validate the
data employed for the training and trial. Afterward, this package
makes it possible to test different algorithms to select the one that
performs better for the studied classification problem [78–82]y. We
select LDA, CARTs, kNN, SVMs with a radial kernel, and an RF. Finally,
we choose the algorithm that performs best in our classification
problem. In Section 4, we show the process in a real case study.

To accurately forecast the time when the project that is under-
way is expected to finish, we must study the data from simulated
projects as a regression problem, as we do in the classification
problem. In this case, from each simulated project j, we use the
absolute value of the deviation (advance or delay) of its final dura-
tion from the planned value (BPD). We also employ the R ‘‘caret”
package to test the following algorithms: LR, generalized linear
regression (GLM), penalized linear regression (glmnet), CART,
SVMs with a radial basis function, and kNN. We must also choose
y For a detailed study of these algorithms, see Refs. [78–82].
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the best algorithm for the regression problem, as explained in
the next section.

To evaluate and compare the accuracy of the different estima-
tion methodologies, we use the MAPE measure, which has been
previously employed in related research [68–71]. This measure
provides a percentage value of the forecasting method’s predictive
accuracy (Eq. (3)). The lower the MAPE value for a forecasting
method is, the more accurate the method is.

MAPE ¼ 100%
n

Xn

t¼1

RD� EDACt�� ��
RD

ð3Þ

where n refers to the total number of monitoring periods while the
project is underway. Estimated duration at completion (EDAC) is
used to indicate the final estimated project duration, calculated
while period t is monitored.

To calculate the MAPE, we use the following as data: RD and the
forecast value (EDAC). The former is obtained from the prediction
of our model during each control period (EDACt). The formula does
not use the AD in the calculation, but the RD. At each control time,
the error between the real project duration (RD) versus the forecast
duration (EDACt) can be calculated.

4. Computational experiment

To explain the SEDM, we choose a real project from the OR-AS
database [72–74]. We select the project called ‘‘2016–15 Residen-
tial House Structural Work.xlsx,” which consists of 13 activities
with a planned duration (BPD) of 126 time units. In the end, how-
ever, the project ended after a duration of 130 time units. For the
work periods, 141 workdays were planned, but the real final work
took 151 workdays.

BPD is the project planned duration. After calculating all the
activity durations and sequencing them properly, we conclude that
the total project planned duration in the example is 126 time units.
In the EDM, we calculate the timework units for each activity. By
definition, each planned timework unit (day, week, month, etc.)
of each activity has a weight of 1, regardless of the effort, resources,
or costs involved in its execution. If we add up all the timework
units of all the project activities, the result is 141 workdays.

The project contains some activities that are performed in par-
allel, while others are performed in series. Its final duration is 126
time units. If all the activities are sequentially executed (in series)
and there are no time buffers, the planned duration will coincide
with the planned timework (141 workdays) because each time-
work unit of each activity is assigned a weight of 1 unit in the EDM.

In order to assign a given probability distribution function to
the project activities, Hammad et al. [75] conducted a comparative
study on different probability distribution functions (PDFs) and
concluded that the most appropriate PDF for the project was nor-
mal distribution. However, we decided to use the triangular distri-
bution function for modeling the activity’s duration because the
definition of the project activities provides us with the most prob-
able, most optimistic, and most pessimistic values. Furthermore,
the literature mentions that a triangular distribution can be used
as a proxy for beta distribution in the risk analysis [28,76].

Uncertainty about the duration of activities is modeled here as a
triangular distribution function whose parameters are the pes-
simistic, most likely, and optimistic duration of each activity.

Fig. 5 represents the data of both the planned project (TPD) and
the real project underway with the curves TAD and TED (as
explained in Fig. 1). It can be seen that they are almost linear.

In the project planning phase, we use the Monte Carlo simula-
tion to obtain N simulated projects according to the uncertainty
of each activity duration. In this example, we employ the commer-
cial Matlab software to generate 25000 different simulated



Fig. 3. Kernel density estimation. (a) The point cloud (ADj, TADADj
); (b) probability density curves.

Fig. 4. Flow diagram: SEDM.
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projects. The software application assigns a random duration to
each project activity according to its probability distribution func-
tion in each simulation. If we repeat this operation 25 000 times,
we will obtain the same number of different projects generated
by the Monte Carlo simulation, each with a different final duration.
The set of all these projects simulated at their final instant can be
represented as a point cloud (see the set of blue dots in Fig. 6).
153
4.1. Deviations in the control milestones

We monitor the deviations in the control milestones as
AD = 45 d. We take the data corresponding to the timework units
spent by each activity until that control period. At this time, TPD is
48 workdays, TAD is 55 workdays, and TED is 52.54 workdays. We
apply Eq. (1) and determine the value of ED(t) to be 49.54 days



Fig. 5. Representation of the project run according to the EDM.

Fig. 6. Representation of the simulated projects at both the control time
(PPI = 39.32%) and final execution time (PPI = 100%).
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(ED(t) = 45 + (52.54 – 52)/(53 – 52) = 49.54). We then apply Eq. (2)
and determine the PPI value to be 39.32% (PPI = 49.54/126 = 39.32%).
In theplanningphase andafter applying theMonteCarlo simulation,
we obtain 25 000 simulated projects (based on the planned project
data).

In the execution phase, the real project is at a certain control
time (AD = 45 d and PPI = 39.32%). For each j simulated project
(Pj) and for this control time (PPI = 39.32%), we must calculate
which pairs of points (ADj, TADADj

) fulfil this condition.
For this purpose, we calculate the value of TEDAD of the real pro-

ject underway. This value will coincide with the same parameter of
all the simulated projects (TEDAD = TEDADj

) (Fig. 2). With the
obtained TEDADj

value, for each project Pj we calculate the corre-
sponding time value ADj and its real duration value TADADj

. These
two values are included in Table 1 for each simulated project.

The columns in Table 1 (AFD and TAD) are the final results of
the duration and work periods for each simulated project (Pj). To
compare these results with the planned values, we assign a value
of 0 if the project is not behind schedule, and a value of 1 other-
wise. In the last two columns, we include the actual value of the
simulated project’s advance or delay (Pj) in relation to the planned
one.

For example, in the simulated project identified as P1,
PPI = 39.32% corresponds to a pair of values (ADj = 53.522,
154
TADADj
= 58.107). The AFD is 125.135 days, which is earlier

(0.865 days) than initially planned (this means that delay = 0).
We can represent the pairs (ADj, TADADj

) of the universe of
simulated projects for PPI = 39.32% (Fig. 6), which produces the
orange-colored cloud of dots at the bottom left of the figure. An
asterisk (*) denotes the position in the diagram of the project
underway for this PPI value: (AD = 45, TADAD = 55). If the actual
project underway is in the point cloud of the simulated projects
(the red-dotted cloud in Fig. 6), then the real project is underway,
according to the normal variability of the activities composing the
project. If the actual project (represented by * in Fig. 6) is located
outside the point cloud, then this situation cannot be explained
by the aleatoric uncertainty of the activities. This situation’s execu-
tion deviates from the normal variability provided by the set of
project activity uncertainties. The blue-colored cloud of dots in
the top right of the Fig. 6 represents the final time (AFDj, TADj)
for the universe of simulated projects.

We can acquire further information (Fig. 7) about the real
project underway (PPI = 39.32%) if we represent the orange-
colored cloud of dots (ADj, TADADj

) in the control milestone
(AD = 45, TADAD = 55) among the simulated projects that end in
advance (delay = 0, AFDj � BPD), and among those that end after
a delay (delay = 1, AFDj > BPD). The project underway comes closer
to the projects that finish with a delay and over workload.

We apply the anomaly detection algorithm (the kde2d function
in R ‘‘MASS”) to the dataset of couples (ADj, TADADj

) that corre-
sponds to AD = 45 (PPI = 32.39%) in order to gain more detailed
information about the deviation observed in the project that is
underway. This function provides the kernel density estimation
that is displayed in Fig. 8. We observe that the project underway
performs worse than 98% of the simulated projects, which can be
taken as a warning to take corrective actions.

4.2. Project estimations

To provide some insight into when the project will end, we pro-
pose studying the project as both a classification problem and a
regression problem. We use the R ‘‘caret” package to provide esti-
mations of the probability of the project ending on time (i.e., not
being delayed) and the expected eventual final time. Before obtain-
ing the results, we process data by dividing the total sample
(25 000 simulation results) into an explicit training dataset used
to prepare the model (80% of outcomes) and an unseen test dataset
to evaluate the model’s performance on unseen data (20% of the
results).

Many different metrics can be used to evaluate machine learn-
ing algorithms in R. When ‘‘caret” is used to evaluate the models,
we get distinct metrics as output for classification problems and
different metrics for regression problems. The default metrics used
are ‘‘Accuracy” for classification problems and root mean squared
error (RMSE) for regression.

Solving the classification problem, Fig. 9 shows the results
returned by R ‘‘caret” for our dataset of simulated projects in
AD = 45 (PPI = 32.39%) with the already proposed algorithms.
The Fig. 9 represents two different ways of measuring the accuracy
of the applied algorithms: Accuracy and Kappa. Accuracy and
Kappa are the default metrics used to evaluate algorithms in binary
and multiclass classification datasets in ‘‘caret.” Accuracy is the
percentage of correctly classified instances among all the
instances. Kappa or Cohen’s Kappa is similar to a classification
accuracy, except that it is normalized at the baseline of the random
chance on the dataset.

The bottom of Fig. 9 shows the two types of employed metrics
placed in two different quadrants: Accuracy on the left of the figure
and Kappa on the right. The different evaluated proposed algo-
rithms are placed on the ordinate axis. The order of placement is



Table 1
A sample of the obtained Monte Carlo simulation results and PPI = 39.32%.

Pj Simulation results BPD = 126 TPD = 141

Control time Finished project Yes (1) / No (0) Quantification

ADj TADj AFD TAD Delay Overwork Delay Overwork

P1 53.522 58.107 125.135 141.748 0 1 �0.865 0.748
P2 46.995 51.986 125.177 142.343 0 1 �0.823 1.343
P3 50.529 53.453 125.053 140.014 0 0 �0.947 �0.986
P4 51.961 55.968 132.052 148.910 1 1 6.052 7.910
P5 44.213 49.246 121.713 139.252 0 0 �4.287 �1.748
P6 50.653 53.861 126.977 142.506 1 1 0.977 1.506

Fig. 7. Projects simulated in AD = 45 (PPI = 39.32%). Red dots denote those that will
end in advance; cyan dots depict those that will end after a delay.
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descending, according to the accuracy of each algorithm. In the
graph, it is possible to compare the averages and see the overlap
of the margins between algorithms. These are useful plots because
they show both the mean estimated accuracy and the 95% confi-
dence interval (i.e., the range within which 95% of the observed
scores fall).

It can be seen that SVM with a radial basis function is the best
option for this case because its average accuracy is the highest
(0.80115) at the 0.95 confidence level. R ‘‘caret” also provides the
same results in a tabular format, including the accuracy achieved
by each algorithm (Fig. 10).
Fig. 8. Probability density curves
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This SVM algorithm provides a 38.35% probability at AD = 45
that the project underway will finish after a delay. In other words,
there is a 61.65% probability of the project ending early. The
regression problem returns an estimation of the expected time
when the project will end. Once again, we use R ‘‘caret” to select
the best algorithm for our problem, and we acquire (in this
case) information as a figure (Fig. 11) or as a numerical table
(Fig. 12).

RMSE and R2 are the default metrics used to evaluate algorithms
in the regression datasets in ‘‘caret.” The RMSE is the average devi-
ation of the predictions from the observations; it is useful for gain-
ing a general idea of how well (or not) an algorithm is doing in the
output variable units. R2, which is known as R-squared or called the
coefficient of determination, provides a goodness-of-fit measure
for the predictions to observations. This value lies between 0 and
1 for no fit and a perfect fit, respectively. The RMSE provides a gen-
eral idea of how wrong all the predictions are (where 0 is perfect),
and R2 indicates how well the model fits the data (where 1 is per-
fect and 0 is not well). Fig. 11 represents the error obtained by each
regression algorithm applied in our project, sorted in ascending
order as the error increases.

We select glmnet as the best algorithm (mean absolute error
(MAE) and RMSE are lower). When we apply the glmnet algorithm
to our dataset at AD = 45, we obtain an expected delay of
–0.577 days.

4.3. Validation

The analysis of the project underway with SEDM at AD = 45 can
be summarized as follows: There is a 0.6165 probability that the
project will end early, the expected time of the final duration is
0.577 days before the BPD (130 days), and the project goes beyond
and the project underway.



Fig. 9. Classification problem: selecting the best algorithm for the case study.

Fig. 10. Classification problem: data in a tabular format. Min: minimum; Qu: quartile; Max: maximum; NA: not available.
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the expected behavior (98% of the universe of simulated projects).
This is the analysis that is done only at this specific control
milestone.

To validate our proposal, we performed a comparison with two
other methodologies, ESM [9] and stochastic EV methodology
(SEVM) [15], throughout the time that the project lasts. Table 2
shows the final project duration predictions obtained by the ESM
and SEVM methods, as well as the work periods when applying
the proposed SEDM method. All these values were calculated at a
certain percentage of the project execution.

Fig. 13 shows the project’s total duration estimation as com-
puted daily from the beginning to the end, AD = {1, 2, . . ., 130},
by the three methodologies (the real project ended on day 130).
At the control milestone AD = 45, the three methodologies forecast
156
that the project will end early (before the 130 days of this project’s
AD).

Upon reviewing the data of the real project that is underway, it
can be seen that the project is progressing better than planned,
until the final periods. This observation is consistent with both
the SEDM and ESM forecasting, although ESM is too optimistic.
Both SEVM and SEDM forecast quite well. At times, however, SEVM
forecasts that the project will end early and, at other times, that it
will end with a delay.

We previously adopted MAPE (Eq. (3)) to compare the accuracy
of the estimation made by different methodologies. Fig. 14 illus-
trates this value during the project’s life cycle. ESM performs worse
than SEVM and SEDM. For this case study, ESDM and ESVM offer
similar estimations, with an average error of around 5%.



Fig. 11. Classification problem: selecting the best algorithm for the case study. MAE: mean absolute error.

Fig. 12. Regression problem: data in a tabular format.
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Table 2
Estimated final project duration based on ESM, SEVM, and SEDM.

Control time AD ESM SEVM AD SEDM

0 0 126.00 126.00 0 126.00
10% 18 87.34 140.30 7 122.37
20% 41 112.30 125.19 17 122.32
30% 52 117.57 130.67 31 123.27
40% 63 121.26 127.06 45 125.42
50% 68 119.90 125.98 60 126.29
60% 77 115.50 122.91 69 124.32
70% 86 117.32 124.03 81 123.14
80% 94 118.77 124.33 95 123.80
90% 105 121.22 124.64 112 126.93
100% 130 130.00 130.00 130 130.00
PPI = 39.32% 45 114.22 127.18 45 125.42

Fig. 13. The final project duration estimations during the project’s timeline.

Fig. 14. MAPE: the final project duration estimation.
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5. The project control and monitoring benchmark: SEDM versus
SEVM and ESM

SEDM is a methodology used for monitoring and controlling
projects. In the previously presented case study, both SEDM and
Table 3
Data for different project networks.

Project s/p nt N ns

2012–10 0.823 18 4 15
2014–08 0.410 40 37 17
2016–15 0.666 13 12 9
2016–28 0.450 21 6 10
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SEVM provided similar final project duration estimations. To com-
pare the two, we review the accuracy of the estimations (MAPE) in
real project samples, which we select from among the projects
available in the OR-AS database [72–74]. The database contains
baseline scheduling data (network, resources, etc.), risk analysis
data (for Monte Carlo simulations), and project control data (using
EVM and ES metrics).

We select four projects with different topology networks
(serial/parallel (SP) indicator), TPD, and number of activities:
2012–10, 2014–08, 2016–15, and 2016–28. The SP indicator has
already been used [13,29,70,74,77], and its definition is shown in
Eq. (4):

SP ¼ ns � 1
nt � 1

ð4Þ

where ns is the number of serial paths and nt is the total number of
paths (including parallel paths). The SP value ranges from 1 to 0,
where SP = 0 refers to a 100% parallel project network, while
SP = 1 represents a 100% serial project network.

Table 3 shows the data for each project: the identifier, SP indi-
cator (s/p), ns, nt, number of critical paths (N), BPD, AFD, TPD, and
TAD.

We also include the MAPE diagram for the whole project life
cycle for ESM, SEVM, and SEDM (Fig. 15). The first conclusion is
that stochastic methods (i.e., SEDM and SEVM) give better estima-
tions than ESM when managing stochastic projects. In comparison,
both SEDM and SEVM exhibit similar behavior for the 2012–10 and
2016–15 projects. These projects take different values for BPD,
AFD, TPD, TAD, and number of paths, but the SP indicator is over
0.5 (i.e., it is a serial project network). The 2014–08 and 2016–28
projects have similar SP indicators (0.41 vs 0.45). SEVM performs
better than SEDM for the 2014–08 project, but SEDM performs bet-
ter than SEVM for the 2016–28 project. Thus, the first result of this
comparison is that it makes sense to use SEDM once it is that both
methodologies return different estimations.

These results lead to a new research question: Can we establish
a rule to assess whether the SEDM or the SEVM should be used to
project monitoring and control? What factors affect each method’s
accuracy?
BPD AFD TPD TAD

54 60 59 67
233 275 402 496
126 130 141 151
71 76 151 161



Fig. 15. The MAPE study for different project networks. (a) 2012–10; (b) 2014–08; (c) 2016–15; (d) 2016–28.
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6. Conclusions

The EDM facilitates project monitoring and control when the
cost of activities is not a good estimator for the project duration.
As an alternative to ESM and to SEVM, which use costs, SEDM is
based on workload. SEDM is useful for monitoring and controlling
projects in which costs are not the key indicator, such as develop-
ment cooperation projects, and projects for which it is difficult to
make a clear costs estimation: large and complex infrastructure
projects, or research and development projects. In such cases,
uncertainty in estimating the cost of activities comes into play,
and using workload and SEDM can provide relevant information
for project managers.

Some studies explain how to implement EDM in deterministic
projects, or even in fuzzy projects. However, situations can arise
in which—due to the stochastic nature of the project activities’
duration—activities become aleatory. Therefore, the time required
for an entire project to finish is always questionable. Nevertheless,
no method exists in the literature to apply EDM to stochastic
projects. By meeting this need, the present research makes it
possible to introduce uncertainty into project activities and to be
able to use EDMmethodology for the control of stochastic projects.
This methodology allows project managers to know the project
status at each control time (delay/advance). It also allows them
to determine whether project overruns are within the expected
variability or if there are structural and systemic changes through-
out the project life cycle. Finally, this approach allows anomalous
situations regarding the project definition to be detected by
considering the possible correlation between the time and cost of
project activities. It also makes it possible to calculate the
probability of exceeding the expected duration.

In this paper, we explained how SEDM should be applied to
stochastic projects in a similar way to SEVM in order to monitor
159
and make good final project duration estimations. Monte Carlo
simulation provides better project duration estimations than ESM
when working with stochastic projects. The process can be
implemented in real projects, allowing project managers to
monitor relevant deviations in workload or duration estimations.

We presented a case study to illustrate the application of SEDM
to stochastic projects, and validated the SEDM methodology in the
proposed case study. We compared the results of SEDM with the
results of both ESM and SEVM. Finally, we explained our analysis
on the interest and usability of SEDM.We selected a set of four pro-
jects for which SEVM offers good final project duration estima-
tions. We also found that SEDM and SEVM sometimes return
equivalent final duration estimations, although one occasionally
performs better than the other.

Further research is required to determine how the network
topology (SP indicator) and other parameters affect the
accuracy of both SEDM and SEVM. While a high SP indicator value
(close to 1) can imply that SEDM and SEVM are equivalent and
other parameters do not affect the accuracy of either SEDM or
SEVM, other project parameters are necessary for SP values
under 0.5.
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