
THE MYTH OF THE 'WATERFALL' SDLC

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

This is admi�edly my1 interpreta"on, but I have tried to provide links to all of the source material I

have used so that you can do your own research if you don't agree with my conclusions.

Also known as: Phased Development, Plan-Driven Development, Specifica"on-Driven Development,

Cascade Model

Introduc on

This is the 5th major version of this wiki ar"cle, and I thought it might be useful to provide a bit of

introduc"on as to why I have wri�en (and occasionally update) such a long ar"cle about a

‘discredited’ methodology like Waterfall.

Several years ago, my employer started making efforts to formally adopt some Agile processes

(Scrum at the "me, DAD currently) for some project types. Wan"ng to educate myself more I started

doing Google searches and reading what material I could find. But my reading got hijacked as I came

across descrip"ons of ‘Waterfall’ over and over again that simply did not match the way we did it at

my employer, or the way any other BA I had talked to had described the way they did projects.

So, I got curious. Did my employer adopt some ‘improved’ version of Waterfall that wasn’t so rigid?

Were there actually people out there at some point advoca"ng the highly-rigid form of Waterfall I

kept reading about on ‘Agile’-oriented web sites? If so, what was their logic and what could I learn

from it?

So I started researching Waterfall. I found out where it supposedly originated from and dug up the

original paper (the Royce paper I discuss in depth below) on the internet. And surprisingly, it had

almost NOTHING in common with the rigid process I kept reading about on Agile sites.

So, I started researching more, and I was surprised to start coming across research papers that cited

the Royce paper, but which completely mis-characterized what it said. These were papers published

in academic journals, not some random blog, so you would expect a higher-level of quality. So I

researched more and more; and what fascinated me was the dichotomy of what people were

consistently referring to as ‘Waterfall’, and what had actually been published in what were cited as

the main ‘sources’ of the Waterfall methodology.

So thus was born this ar"cle on ‘Waterfall’. It is not an ‘apology’ for or a ‘defense’ of Waterfall. It is

my best effort (so far) to show that as far as I can tell no one has ever seriously advocated for the

highly rigid soAware process that is commonly called Waterfall [with the caveat that I may not have

come across the right reference yet]. And not only had no one ever advocated it, that the people

"blamed" for this process called Waterfall had advocated for things very different than what the

current understanding is. Lastly, I would argue that if you consider the environment that early

soAware development took place in that there are a number of very valid reasons for a planning-

centric, documenta"on-heavy development process to be used as the best op"on available.

Most importantly though, I think it is important to challenge some of the common assump ons

and 'common knowledge' that exists in the technology world and ques on whether that

1 David Olson and I’ve been a Business Analyst with a global financial services firm since 2004.

2

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

informa on is true or is presented in certain ways to serve personal or commercial agendas. I

happen to think that 'Waterfall' is a strong example of this sort of thing that by understanding the

background you as a reader may be less inclined to accept statements at face value and do more

cri cal thinking of your own. This is why all the sources I have used are fully documented and for

the majority of them I provide direct links where possible. It gives you the op on to validate my

work and form your own opinion.

I would also say that it's important to understand the context under which different ideas and

approaches arose. By understanding that context you can understand what may need to be re-

evaluated as the context changes and iden"fy similar contexts in your own situa"on. This way you

may have a be�er idea of what may work in your current context and why, saving you the trouble of

having to learn the hard way.

You may not care about any of this. Or the history involved. Or what the ‘sources’ actually said. You

may find all the contextual informa"on tedious and uninteres"ng. In that case, feel free to read the

What is it? sec"on immediately below and then skip down past the Origins sec"on and ignore

everything in between.

But if you do find it interes"ng, please read the whole ar"cle. If you know of references I haven’t

touched on that are appropriate, please let me know. I am completely open to changing this ar"cle,

but I want to make sure that most of the ar"cle is grounded in actual references. People can then

form their own opinions based on the evidence.

My conclusion aAer reading all that I have so far is the same as it was before I started doing all this

research. There is no universally applicable development methodology. You need to tailor your

development process to the situa"on at hand. Some"mes that will look very ‘Agile’, some"mes it will

look very ‘Waterfall’, and some"mes have parts of both or neither. As has been repeatedly said,

There is no silver bullet.

What is it?

Strangely enough, this is probably the most controversial aspect of Waterfall. There seems to be a

common ‘understanding’ of what Waterfall is among a great many people in the technology world,

but I would argue that that ‘understanding’ is not supported by ANY of the references that are

named as the ‘source’ of Waterfall.

The best ini"al descrip"on that I can come up with based on my reading is that the Waterfall model

is a Systems (or SoAware) Development Life Cycle (SDLC) process model that is project management

and solu"on-design focused; and which u"lizes a highly-planned, specifica"on-driven development

process. It was probably the first formalized instance of a SDLC model, and nearly every soAware

development model since has incorporated some of its features.[32]

What is now called Waterfall is frequently thought to have been first proposed by Winston W. Royce

in a 1970 paper,[2] but aspects of the conceptual process go back to at least a 1956 paper by Herbert

W. Bennington. [1, 32]

However, the Waterfall model is also seen as highly controversial by some in the soAware

development community. Indeed, some have gone so far as to call it a toxic concept,[4] and the most

3

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

costly mistake in the world.[17] Partly, this is due to wide-ranging differences in how people define

the waterfall model. And I think it is partly due to a desire to have Waterfall as a useful straw-man to

use for promo"ng personal agendas. These are due to both common misunderstandings of the

history of Waterfall and because of the changing nature of what has been called Waterfall over "me.

In general, the way the Waterfall model is described in current "mes seems to be highly dependent

on the knowledge, agenda, and personal biases of the person describing it.

What's in a Name?

So why is it called the Waterfall model? First, you need to know that Royce never used that term in

describing his work and to understand that the Waterfall model name was assigned by others.

Second, it helps to look at a common visual representa"on of the model such as the one below

(which is similar to the one used on Wikipedia):

Figure A

If you look at that diagram, the common descrip"on of ‘Waterfall’ as … each phase cascades down

into the next, you know, like a waterfall begin to make sense. [10]

However, the oldest reference to Waterfall does not use the ‘Waterfall’ name in that way and allows

for far more subtlety in interpreta"on. That earliest reference to ‘Waterfall’ comes in a 1976 research

paper by Bell & Thayer,[12] 6-years aAer Royce published his paper. The full quote is included below

because I think it provides a good example of the way the Royce paper was perceived ini"ally and

that the ‘Waterfall’ nomenclature was not ini"ally meant the way it later came to be interpreted.

Bell and Thayer say the following:

“The evolu
on of approaches for the development of so�ware systems has generally

paralleled the evolu
on of ideas for the implementa
on of code. Over the last ten years

more structure and discipline have been adopted, and prac

oners have concluded that a

4

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

top-down approach is superior to the bo�om-up approach of the past. The Military

Standard set MILSTD 490/483 recognized this newer approach by specifying a system

requirements document, a "design-to" requirements document that is created in response to

the system requirements, and then a "code-to" requirements document for each so�ware

module in the design. Each of these is at a lower level of detail than the former, so the

system developers are led through a top-down process. The same top-down approach to a

series of requirements statements is explained, without the specialized military jargon, in an

excellent paper by Royce [5]; he introduced the concept of the Waterfall of development

ac
vi
es. In this approach so�ware is developed in the disciplined sequence of ac
vi
es

shown in Figure I. [Figure 1 is a standard Waterfall diagram like the one immediately above]

Each of the documents in the early phases of the waterfall can be considered as sta
ng a set

of requirements. At each level a set of requirements serve as the input and a design is

produced as output. This design then becomes the requirements set for the designer at the

next level down. With so many levels of requirements documents, and with so few so�ware

projects mapping nicely into the scheme, we must be more specific about what we mean by

the term "so�ware requirements" as used in our studies. We do not mean all the various

levels of requirements, but only a single one, one that can usually be iden�fied in large

so�ware development projects that have ended successfully. At this level the so�ware

requirements describe func�ons that the so�ware must perform, but not how they must

be implemented. For example, they might contain a requirement that a BMD system

iden
fy erroneous RADAR returns that have any of five specific characteris
cs. However, the

so�ware to meet this requirement might be spread through twelve subrou
nes using any of

a large number of iden
fica
on techniques.” [12] (emphasis mine)

A Tale of Two Waterfalls

The problem with discussing the Waterfall Model is that there are at least two significantly different

understandings of what it is. The most common interpreta"on is what I am calling the ‘Frozen

Waterfall’ in this ar"cle. The other is what Royce originally described in his paper. Because Royce is

most commonly cited as the ‘source’ of the Waterfall method, I am going to give what he described

priority for the use of the term ‘Waterfall’.

Thus, for the purposes of this ar"cle, I am going to treat Waterfall as being the process that Royce

fully espoused in his 1970 paper. But first, I think we need to address the ‘frozen’ [10] Waterfall

interpreta"on.

‘Frozen’ Waterfall

Most commonly modeled using a diagram such as Figure A above (which is a recrea"on of the one

on Wikipedia), the ‘frozen’ Waterfall approach is usually described as having the following

characteris"cs:

1. It is a sequen"al, rigidly-planned process consis"ng of several phases that must be

completed in sequence. [25, 33, 34, 38]

2. Each phase is a silo, completely separate from the other stages and the results of each phase

are frozen once the phase is complete. [10, 38]

5

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

3. Each phase must be completed with 100% certainty before the project team moves on to the

next phase. [5, 10, 33, 34]

4. It ignores end-user development and end-user involvement outside of requirements

specifica"on. [4] Or that if requirements changes are made aAer coding starts, they are made

without involving stakeholders. [24]

5. That requirements can never be changed once the requirements phase is complete [5, 10, 34, 36,

37], and as a result it “assumes human developers are capable of correctly geQng the

requirements, design and tests correct on the first try.” [4, 36] (emphasis mine)

6. It “separates analysis from design”, forcing developers to “generate a solu"on, without

providing any guidance as to how the solu"on is generated”. [4]

There are lots of references to this ‘frozen’ waterfall methodology, especially from ‘Agile’ proponents,

but I cannot find a single paper that espouses this version of the Waterfall methodology. I can find

quite a few who a�ribute these characteris"cs to ‘Waterfall’, while usually referencing the Royce

paper, but none that actually espouse this (including Royce). From what I can tell, this ‘frozen’

Waterfall has never been advocated for by anyone, although it may have existed due to the

ignorance of those trying to follow what they thought was the ‘Waterfall’ process.

A less opinionated, more academic descrip"on of the “problems” with ‘frozen’ Waterfall can be

found in a white paper by Qine"Q, a Bri"sh defense contractor that was formerly part of a UK

government agency. [25] The Qine"Q paper states that the Waterfall model was based on a number

of assump"ons:

o that all its stages could be completed in sequence

o that the costs and benefits of an informa"on system could be calculated in advance

o that users knew what they wanted

o that the work needed was known and could be measured

o that programs once wri�en could be altered

o that the right answer could be produced first "me

But even this descrip"on seems to be largely unsupportable when you read the various documents

that provide the founda"on for “Waterfall”.

Royce’s Waterfall

So, if the descrip"on above is for the ‘Frozen’ interpreta"on of Waterfall, what exactly is the

“Waterfall model” as proposed by Royce and modified by others as an idea of ‘what to do’, rather

than ‘what not to do’?

Based on my reading of the literature (mostly covered below), I would say that in general the

‘Waterfall’ model has the following characteris"cs:

o It is a process that seeks to reduce risk and costs through planning, documenta"on, and

process controls.

o It includes a significant up-front effort to elicit, analyze, evaluate, and confirm both user and

“business” needs before development begins in order to reduce the amount of re-coding

that needs to be done later, and to ensure (as much as possible) that the system architecture

is sufficient for the current and future needs of the client.

6

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

o It is a process that is focused not just on the soAware being developed, but strongly factors

in the context the soAware will be used in and suppor"ng the full lifecycle of a soAware

product (development, tes"ng, deployment, maintenance, enhancements, and re"rement).

o The process is comprised of a set of phases that are roughly sequen"al in nature, in that later

phases depend on input from prior phases. However, these phases can overlap, interact, and

be revisited.

o Because of its planning-focused nature, the overall cycle is generally completed a small

number of "mes (most commonly 1 to 2 "mes). If executed more than once, the first cycle is

usually for the crea"on of a prototype.

o The process is generally documenta"on heavy, especially compared to “Agile” processes.

o The process is generally intended for use in large, complex efforts that require careful

coordina"on among mul"ple teams in order to be successful.

o Once a certain stage in the overall process has been reached (usually requirements sign-off),

a formal change-control process is used to manage change efforts.

o Quality Assurance is integrated by spliQng each phase into two parts: the first part executes

the work of the phase, and the second part validates it. [32]

Please note that the above descrip"on does NOT mean that each phase must be 100% complete

before the next phase can be engaged. What it means is that in general, if you want to do analysis,

you need to have something to analyze. So the results of a SoAware Requirements ac"vity (there

can be mul"ple ac"vi"es) would be the input to an Analysis ac"vity, which would in turn be the input

into a Design ac"vity.

Some Historical Context

Before discussing this history and details of what The Waterfall model are, I think it is cri"cal for

readers to first understand the context in which it developed.

The Hardware

The 1950’s and the 1960’s were the first 2 decades of the computer era. This was largely the era of

mainframe computers, with mini-computers star"ng to appear on the scene in the mid-1960’s.

Personal computers such as the IBM PC and Macintosh weren’t even a considera"on during this "me

period, as they did not appear un"l the early to mid-1980’s.

Addi"onally, the capacity of even the best computers was far more limited than modern computers.

Much of the soAware was being developed as parts of integrated systems, where issues of

compu"ng speed, memory amounts, and system design all impacted how soAware could operate

and which posed challenges of resource scarcity that modern programmers rarely have to deal

with.[1]

7

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

The Development Environment

Most development was probably being done in assembly, ALGOL (mid-1950’s), Fortran (first compiler

in 1957), COMTRAN (released in 1957), FLOW-MATIC (general compiler available in 1959), COBOL

(replaced COMTRAN at IBM in 1962), and PL/I (first compiler 1966).

The C programming language was not developed un"l the early 1970’s, and not formalized un"l the

late 1970’s. Most object-oriented languages did not receive wide-spread use un"l the mid-1980’s.

The languages used were less concise, and thus more subject to coding errors. For example, a simple

hello world program in a modern language like C can be done in 4 lines of code or less. In an older

language like COBOL it took 17 lines of code. [20]

Lastly, soAware development tools were much simpler. While be�er development tools became

more common in the mid-to-late 1960’s, modern tools like code-highligh"ng, robust Integrated

Development Environments (IDE’s), version control systems like Git, and many other tools that make

modern development easier and of higher quality did not exist at the "me.

The Developers

While the early soAware developers of the 1950’s were mostly engineers or mathema"cians, by the

late-1950’s and early 1960’s the need for programmers vastly exceeded the number of people

available with engineering and mathema"cs backgrounds. The programming field was flooded with

people whose training was in the humani"es, social sciences, foreign languages, and fine arts. [21]

Many of these were reportedly influenced by the “ques"on authority” aQtudes of the 1960’s [21] and

were resistant to a�empts to organize and manage the development process.

Many of these issues con"nued well into the 1970’s where a 1975 survey found that the “average

coder in 14 large organiza"ons had two years of college educa"on and two years of soAware

experience; was familiar with two programming languages and soAware products; and was generally

sloppy, inflexible, 'in over his head', and undermanaged”. [21] Of course, how much that statement

represents reality and how much it represents bias is impossible to tell 40 years later. But it gives a

perspec"ve on the issues of the "me.

The Development Process

Because of the type of Development Environment and Developers that were common at the "me, it

should be no surprise that the code and fix style of programming was the most common process

during the 1960’s. The developers were oAen very crea"ve, but the process of coding, then fixing

bugs, then coding more, then fixing more bugs, tended to result in heavily patched spagheQ code.
[21]

The concepts of structured programming such as the use of sub-rou"nes, block structures and loops
[22] only started to become common in the late-1960’s and even then there was resistance among

many programmers to efforts to make code more readable, easy to maintain and fix.

8

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

The Cost Centers

A cri"cal difference between modern development and what the situa"on was in the 1950’s, 1960’s,

and 1970’s was in the cost centers. In the current environment compu"ng resources are so cheap

and plen"ful that the human costs of developers, project staff, and related personal far outweigh the

cost of any compu"ng resources that are consumed.

However, the situa"on was once the exact opposite. As Barry Boehm relates, “On my first day on the

job [in the 1950’s], my supervisor showed me a GD ERA 1103 computer, which filled a large room. He

said, 'Now listen. We are paying $600 an hour for this computer and $2 an hour for you, and I want

you to act accordingly'.”

Bennington provides similar informa"on in his paper in which he states that the cost for a full-"me

engineering man-year (with all overhead) came to roughly $1.50 an hour, whereas computer "me

was billed at a cost of $500 an hour. [1]

While the cost structure eventually reached its current state of human costs being the vast majority, I

would guess that compu"ng resources were more expensive at least into the mid-1980’s.

What this cost structure meant was that there was an effort to do as much analysis, coding, and

quality tes"ng offline as possible. Compu"ng "me was simply too expensive to be used for things

that were done much more cheaply by humans without the use of a computer.

Project Scales

The last contextual factor to consider in the development of Waterfall was the project scales that

were being undertaken (rela"ve to other work of the era). As Royce states in the first paragraph of

his paper, he had spent the previous nine years “mostly concerned with the development of soAware

packages for spacecraA mission planning, commanding and post-flight analysis”. Like Barry Boehm

and many of other major figures in soAware development at the "me, he had spent most of his "me

working on major soAware development projects for the U.S. government. Mainly the Department

of Defense and NASA.

This means nearly all of his work involved the massive complexi"es of government bidding and

contrac"ng, the frequent use of many sub-contractors, and oAen massive systems integra"on

challenges. Many (or most) of these ini"a"ves would be made up mul"ple (or a great many) brand

new non-compu"ng hardware components (radars, rockets, etc.), integrated with cuQng edge

computer hardware and soAware, with dozens or hundreds of sub-systems that had to communicate

together properly. It seems not uncommon for there to have been thousands of individual

developers working on different aspects of these efforts. In Royce’s case he had the addi"onal

complexity of working on systems that would be going into space where the margin for error is

essen"ally zero.

Conclusions

Given the situa"on context provided above, it should be no surprise to readers that Royce would

discuss a process that was focused on the following:

o Cost Control – Doing as much without compu"ng resources as possible

9

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

o Quality Management – Using as many processes as possible to ensure that the solu"on

delivered is of the highest quality possible (thus documenta"on, documenta"on,

documenta"on). One par"cularly important aspect of this was the use of documenta"on as

a coordina"on ar"fact.

o Project Management – As can be seen later in this document, Royce was very concerned

with the project management, support, and maintenance aspects of the soAware lifecycle,

not just the actual coding work. Thus, his ideas were focused more on suppor"ng those

efforts than the focus of someone who was mostly concerned with development would be.

Origins

The origins of the Waterfall model are usually ascribed to papers by Herbert D. Bennington in 1956 [1]

and Winston W. Royce in 1970 [2] and the blame for the wide-spread adop"on of the ‘frozen’

Waterfall methodology is usually a�ributed to its adop"on by the US Department of Defense with

DOD Standard 2167, the MILITARY STANDARD: DEFENSE SYSTEM SOFTWARE DEVELOPMENT,

published on June 4, 1985. [33]

However, neither author uses the term Waterfall in their papers anywhere, nor are the processes

they discuss nearly as rigid as the ‘frozen’ interpreta"on of waterfall.

The Bennington Paper

Herbert D. Bennington presented a paper at a symposium on advanced programming methods

sponsored by the Navy Mathema"cal Compu"ng Advisory Panel in June 1956 in which he described

the techniques used to produce the programs for the Semi-Automa"c Ground Environment (SAGE)

system that was developed for the U.S. government. This was the first U.S. air defense system, and its

scope was the en"re North American con"nent. It's cost, both in funding and number of personnel

involved, exceeded the Manha�en Project. [40] The MIT Lincoln Laboratory was established to do the

systems engineering work (and would eventually be spun out by MIT to become the MITRE

corpora"on [41]), and the System Development Division (later System Development Corpora"on)

established by the RAND corpora"on to do the soAware development (h/t to Dennis Asaka for

poin"ng out the role that the Systems Development Division played to me).

To give some addi"onal context on the pioneering work involved in the SAGE project, the following

quote is taken from the SAGE page in the history sec"on of the Lincoln Laboratory web site at MIT.

In addi
on to the computer hardware, a large part of the air defense project effort was

devoted to so�ware development. The so�ware task developed quickly into the largest real-

me control program ever coded, and all the coding had to be done in machine language

since higher-order languages did not yet exist. Furthermore, the code had to be assembled,

checked, and realis
cally tested on a one-of-a-kind computer that was a shared test bed for

so�ware development, hardware development, demonstra
ons for visi
ng officials, and

training of the first crew of Air Force operators.

Computer so�ware was in an embryonic state at the beginning of the SAGE effort. In fact,

the art of computer programming was essen
ally invented for SAGE. Among the innova
ons

10

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

was more efficient programming (both in terms of computer run
me and memory

u
liza
on), which was achieved through the use of generalized subrou
nes and which

allowed the elimina
on of a one-to-one correspondence between the func
ons being

carried out and the computer code performing these func
ons. A new concept, the central

service (or bookkeeping) subprogram, was introduced.

Documenta
on procedures provided a detailed record of system opera
ons and

demonstrated the importance of system documenta
on. Checkout was made immensely

faster and easier with u
lity subprograms that helped locate program errors. These general-

purpose subprograms served, in effect, as the first computer compiler. The size of the

program — 25,000 instruc
ons — was extraordinary for 1955; it was the first large, fully

integrated digital computer program developed for any applica
on. Whirlwind was equal to

the task: between June and November 1955, the computer operated on a 24-hour, 7-day

schedule with 97.8 percent reliability.

Because of the complexity of the so�ware, Lincoln Laboratory became one of the first

ins
tu
ons to enforce rigid documenta
on procedures. The so�ware crea
on process

included flow charts, program lis
ngs, parameter and assembly test specifica
ons, system

and program opera
ng manuals, and opera
onal, program, and coding specifica
ons.

About one-quarter of the instruc
ons supported opera
onal air defense missions. The

remainder of the code was used to help generate programs, to test systems, to document

the process, and to support the managerial and analy
c chores essen
al to good so�ware.

Bennington's paper was the first that I can find that described a phased development process that is

similar to what eventually became the Waterfall model. And Barry Boehm seems to agree when he

called Bennington’s process the ‘Stagewise’ model [26] and said that it was the first to say that

soAware should be implemented in successive stages. Boehm then went on to say that the

‘Waterfall’ model was a “highly influen"al

refinement” of the Stagewise model. [26] The

following is a re-crea"on of a diagram Bennington

provided in his paper that described their overall

process.

11

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

However, before you make the same mistake that others made with Royce’s diagrams and think that

Bennington was advoca"ng for a rigidly sequen"al process model, consider the addi"onal

informa"on that Bennington provides in his paper.

In describing how they were successful Bennington says: [1]

o “We were all engineers and had been trained to organize our efforts along engineering lines.”

o “… to define a system of documenta"on so that others would know what was being done;”

o “… to define interfaces and police them carefully;”

o “… to recognize that things would not work well the first, second, or third me”

o “… to keep a record of everything that really went wrong and to see whether it really got

fixed”

o “… we undertook the programming only a:er we had assembled an experimental

prototype of 35,000 instruc"ons that performed all of the bare-bones func"ons of air

defense.”

o “… producing large computer programs is like raising a family… you have to start out and do

it on your own, learn the unique op"ons you have, see what unexpected problems arise,

and, with reasonable luck, perform about as well as those who have been doing it forever.”

What you see above is the founda"ons of a structured, planned approach to soAware development.

But you also see that ideas such as building prototypes were being used as far back as the 1950’s.

And just because they may not be explicitly shown in diagrams does not mean they were not being

done.

One interes"ng point of the Bennington paper is that it points at why so much effort was placed on

documenta"on by those who successfully worked on large computer programs (at least at that "me).

He said,

Finally, there is the problem of documenta
on. In the early days of programming you could

call up the programmer if the machine stopped. You seldom modified another’s program –

you wrote your own. Although present automa
c programming technology has done much

to make programs more communicable among programmers, there is a long way to go

before we can take an integrated program of 100,000 instruc
ons and make it “public

property” for the user, the coder, the tester, the evaluator, and the on-site maintenance

programmer. The only answer seems to be the documenta
on of the system on every level

from sales brochures for management to instruc
on lis
ngs for maintenance engineers.

This emphasis that documenta"on serves a purpose far beyond use by the coder is an important one

that Royce will repeat and which con"nues to be overlooked in many discussions today.

The Royce Paper

The second paper, and the one most frequently cited as the source for the Waterfall methodology, is

the paper by Winston W. Royce in 1970. Royce starts the paper off by declaring that it “describes my

personal views about managing larger soAware developments” and that “I have become prejudiced

by my experiences and I am going to relate some of these prejudices in this presenta"on.”

12

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

So it should be clear right off the bat that Royce was not saying all programming efforts should be

done the way he discusses. He says his discussion is focused on “larger soAware developments”. He

also makes clear that he is presen"ng his prejudiced opinions.

The ‘Common’ Ac vi es of Any Programming Effort

Royce starts out by saying that there are two steps common to all programming efforts, regardless of

size or complexity. These are the Analysis and Coding steps, which are shown Figure 1 of his paper

(recreated below):

Figure 1

Royce says that these two steps are all that is needed if the effort is sufficiently small and if the final

product is to be operated by those who built it. [2] However, he then goes on to say that:

“An implementa
on plan to manufacture larger so�ware systems, and keyed only to these

steps, however, is doomed to failure. Many addi
onal development steps are required, none

contribute as directly to the final product as analysis and coding, and all drive up the

development costs. Customer personnel would rather not pay for them and development

personnel would rather not implement them. The prime func�on of management is to sell

these concepts to both groups and then enforce compliance on the part of development

personnel.” [2] [Emphasis mine]

Given the statement bolded above, it should be immediately clear that Royce is discussing a soAware

development model that has a [project] management perspec"ve. He’s not trying to op"mize

developer happiness, customer happiness, or drive-down costs. His focus is on what he considers

cri"cal for the success of large system development efforts.

The addi"onal steps Royce feels are necessary for a large effort are then shown in Figure 2 of his

paper. And this also seems to be where most of the confusion over what Waterfall means comes

from. That diagram [Figure 2] is recreated [with color added] below:

13

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

Figure 2

Royce is using his figure 2 (above) as an expansion of the simple two-step process he showed in

Figure 1 by adding the addi"onal steps he states are necessary. He describes it as:

“A more grandiose approach to so�ware development is illustrated in Figure 2. The analysis

and coding steps are s
ll in the picture, but they are preceded by two levels of requirements

analysis, are separated by a program design step, and followed by a tes
ng step. These

addi
ons are treated separately from analysis and coding because they are dis
nctly

different in the way they are executed. They must be planned and staffed differently for best

u
liza
on of program resources.” [2]

So far this s"ll sounds like the commonly assigned characteris"cs of “Waterfall”. But that idea

completely ignores the very next line aAer the quote above and its accompanying figure. The next

paragraph immediately aAer the quote above is:

“Figure 3 portrays the itera
ve rela
onship between successive development phases for this

scheme. The ordering of steps is based on the following concept: that as each step

progresses and the design is further detailed, there is an itera
on with the preceding and

succeeding steps but rarely with the more remote steps in the sequence. The virtue of all of

this is that as the design proceeds the change process is scoped down to manageable limits.

At any point in the design process a�er the requirements analysis is completed there exists a

firm and closeup, moving baseline to which to return in the event of unforeseen design

difficul
es. What we have is an effec
ve fallback posi
on that tends to maximize the extent

of early work that is salvageable and preserved.” [2] [emphasis mine]

So Royce was saying that the process he is discussing is an itera"ve process and, by context, that the

first diagram (Figure 2) is just a representa"on of the overall process flow. He then goes on to show

Figure 3 (as indicated in the quote) which does include the itera"ve nature in the diagram. That

diagram (his Figure 3) is recreated below:

14

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

Figure 3

Figure 3 above is probably the closest defini"on to a ‘tradi"onal development model’ that I can find,

if you consider ‘tradi"onal development’ to be whatever Royce was building upon. Or if you consider

‘Waterfall’ to be what Royce was cri"cizing, Figure 3 above would be the correct model to use,

because it is this figure [Figure 3] that forms the baseline process that Royce wants to improve.

However, it should be made clear that Royce is NOT saying this model [Figure 3] is not a good one to

use, or should never be used. This is shown later on the same page of his paper when Royce states:

However, I believe the illustrated approach to be fundamentally sound. The remainder of

this discussion presents five addi
onal features that must be added to this basic approach to

eliminate most of the development risks. [2] [emphasis mine]

So Royce is sta"ng that the basic process he has described to this point [which is what is shown in

Figure 3, NOT what is shown in Figure 2] is fundamentally sound. But that it can be improved by the

addi"onal steps he is recommending.

Royce begins his cri"cisms by sta"ng:

I believe in this concept, but the implementa
on described above is risky and invites failure.

The problem is illustrated in Figure 4. [2]

I have re-created Figure 4 from the Royce paper below.

15

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

Figure 4

AAer referring to Figure 4, Royce goes on to say:

The tes
ng phase which occurs at the end of the development cycle is the first event for

which �ming, storage, input/output transfers, etc., are experienced as dis�nguished from

analyzed. These phenomena are not precisely analyzable. They are not the solu�ons to

the standard par�al differen�al equa�ons of mathema�cal physics for instance. Yet if

these phenomena fail to sa�sfy the various external constraints, then invariably a major

redesign is required. A simple octal patch or redo of some isolated code will not fix these

kinds of difficul
es. The required design changes are likely to be so disrup
ve that the

so�ware requirements upon which the design is based and which provides the ra
onale for

everything are violated. Either the requirements must be modified, or a substan
al change

in the design is required. In effect the development process has returned to the origin and

one can expect up to a lO0-percent overrun in schedule and/or costs. [2] [emphasis mine]

So Royce is NOT saying that it is impossible to define func"onal requirements ahead of "me, as some

have posited. Rather, he is poin"ng to the difficul"es of geQng the func"onal needs of the customer

to operate in an acceptable manner within the system constraints as they were originally defined in

the system requirements. I think in part this needs to be evaluated based on the more constrained

compu"ng resources available at the "me and trying to get large and complex soAware to execute

with stability and speed within those constrained system environments. This was no doubt further

influenced by the fact that Royce was opera"ng on space systems where issues such as power use,

memory, and system reliability were all major constraints.

This emphasis on the system design requirements is further revealed in yet another quote from page

2 of his paper, in which Royce says:

In my experience there are whole departments consumed with the analysis of orbit

mechanics, spacecra� aOtude determina
on, mathema
cal op
miza
on of payload

ac
vity and so forth, but when these departments have completed their difficult and

complex work, the resultant program steps involve a few lines of serial arithme
c code. If in

the execu
on of their difficult and complex work the analysts have made a mistake, the

16

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

correc
on is invariably implemented by a minor change in the code with no disrup
ve

feedback into the other developmental bases. [2]

So while Royce acknowledges that geQng the customer (or func"onal) requirements correct is a

difficult and complex task (so much so he says it twice), his focus in this aspect is on geQng system

design requirements correct. I don’t necessarily agree that his statements about the rela"ve ease of

implemen"ng (func"onal) requirements changes are s"ll true, but I am trying to show the context in

which he made his statements.

His concern with system requirements is further shown when he discusses the magnitude of

poten"al disrup"on caused by missed system requirements by sta"ng:

The required design changes are likely to be so disrup
ve that the so�ware requirements

upon which the design is based and which provides the ra
onale for everything are violated.

Either the requirements must be modified, or a substan
al change in the design is required.

In effect the development process has returned to the origin and one can expect up to a lO0-

percent overrun in schedule and/or costs. [2]

 So the point he seems to be making is that if the system design

(the system requirements) isn’t sufficient to meet the soAware requirements (the customer or

func"onal requirements AND non-func"onal requirements), that either the en"re system design

must be re-architected or the soAware capabili"es must be changed (reduced) so as to enable the

system design to run the soAware.

While I personally agree that it’s probably not possible to define requirements perfectly ahead of

"me for large soAware products, using the quote above to cri"cize the crea"on of func"onal

requirements misses the point that Royce was raising.

More broadly, Royce is also making his first major cri"cism of the process he has described up to this

point by poin"ng out that its scope for itera"on is too narrow. With itera"ons only occurring

(generally) between each immediately prior and successive phase, he thinks this is too narrow and

risky. He feels this may limit the processes ability to react to issues discovered in one phase may

require a larger change than to either the immediately prior or successor phases.

Royce’s Five Fixes #1 – Program Design Comes First

At this point Royce goes about offering his sugges"ons for how to fix the original process through

adding 5 addi"onal steps. The first step was Program Design Comes First, about which he says:

A preliminary program design phase has been inserted between the so�ware requirements

genera
on phase and the analysis phase. This procedure can be cri
cized on the basis that

the program designer is forced to design in the rela
ve vacuum of ini
al so�ware

requirements without any exis
ng analysis. As a result, his preliminary design may be

substan
ally in error as compared to his design if he were to wait un
l the analysis was

complete. This cri
cism is correct but it misses the point. By this technique the program

designer assures that the so�ware will not fail because of storage,
ming, and data flux

reasons. As the analysis proceeds in the succeeding phase the program designer must

impose on the analyst the storage,
ming, and opera
onal constraints in such a way that he

senses the consequence….. If the total resources to be applied are insufficient or if the

embryo opera
onal design is wrong it will be recognized at this earlier stage and the

17

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

itera
on with requirements and preliminary design can be redone before final design,

coding and test commences. [2] [emphasis mine]

He provides Figure 5 in his document (recreated below) to show this change.

Figure 5

Again, it is important to note that even with his fix, Royce is staying with essen"ally the same

Waterfall model that he started with.

Royce’s Five Fixes #2 – Document the Design

The second step Royce recommends as part of his fix is to Document the Design. A focus on

documenta"on is oAen flagged as one of the major faults of Waterfall, so it might be useful to

understand why Royce was such an ardent fan of documenta"on. In his words:

“At this point it is appropriate to raise the issue of – ‘how much documenta
on’? My own

view is ‘quite a lot’, certainly more than most programmers, analysts, or program designers

are willing to do if le� up to their own devices. The first rule of managing so�ware

development is ruthless enforcement of documenta�on requirements.

Occasionally I am called upon to review the progress of other so�ware design efforts. My

first step is to inves
gate the state of the documenta
on. If the documenta�on is in serious

default my first recommenda�on is simple. Replace project management. Stop all

ac
vi
es not related to documenta
on. Bring the documenta
on up to reasonable

standards. Management of so�ware is simply impossible without a very high degree of

documenta�on”. [2] [All emphasis mine]

No"ce that the emphasis Royce is placing on documenta"on is not for the purpose of helping the

developers. He comes right out and says that the level of documenta"on that should be present is

more than most programmers, analysts, or program designers are willing to do if leA up to their own

devices. The purpose of documenta"on is for the management of the soAware lifecycle.

18

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

Royce then discusses why so much documenta"on should be provided and why it is so important

during the design phase of a soAware development effort. As he says:

Each designer must communicate with interfacing designers, with his management and

possibly with the customer. A verbal record is too intangible to provide an adequate basis

for an interface or management decision. An acceptable wri�en descrip
on forces the

designer to take an unequivocal posi
on and provide tangible evidence of comple
on. It

prevents the designer from hiding behind the – ‘I am 90 percent finished’ - syndrome

month a�er month. [2]

During the early phase of so�ware development the documenta
on is the specifica
on and

is the design. Un�l coding begins these three nouns (documenta�on, specifica�on, design)

denote a single thing. If the documenta�on is bad, the design is bad. If the documenta�on

does not yet exist there is as yet no design, only people thinking and talking about the

design which is of value, but not much. [2]

Royce also makes the point that documenta"on serves important purposes far beyond the design

stage. Indeed, he says:

“The real monetary value of good documenta�on begins downstream of the development

process during the tes�ng phase and con�nues through opera�ons and redesign. The

value of documenta
on can be described in terms of three concrete, tangible situa
ons that

every program manager faces. [2]

During the tes
ng phase, with good documenta�on the manager can concentrate

personnel on the mistakes in the program. Without good documenta�on, every mistake …

is analyzed by one man who probably made the mistake in the first place as he is the only

man who understands the program area.

During the opera
onal phase, with good documenta
on the manager can use opera
on-

oriented personnel to operate the program and to do a be�er job, cheaper. Without good

documenta
on the so�ware must be operated by those who built it. … It should be pointed

out that in this connec
on that in an opera
onal situa
on, if there is a hangup the

so�ware is always blamed first. In order to either absolve the so�ware or fix the blame,

the so�ware documenta�on must speak clearly.

Following ini
al opera
ons, when system improvements are in order, good documenta�on

permits effec�ve redesign, upda�ng and retrofi5ng in the field. If documenta
on does not

exist, generally the en
re exis
ng framework of opera
ng so�ware must be junked, even for

rela
vely modest changes”.

Royce’s Five Fixes #3 – Do It Twice

Royce’s third fix was to Do It Twice. Or essen"ally, start off with prototype when building en"rely

new soAware. Royce states:

If the computer program in ques
on is being developed for the first
me, arrange ma�ers so

that the version finally delivered to the customer for opera
onal deployment is actually the

second version insofar as cri�cal design / opera�onal areas are concerned. … The point of

all of this, as with a simula
on, is that ques
ons of
ming, storage, etc. which are otherwise

19

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

ma�ers of judgment, can now be studied with precision. Without this simula
on the project

manager is at the mercy of human judgment. [2]

Note that even with this change Royce does not seem to be saying that every last detail of the

program must be finalized and irrevocable. The purpose of this simula"on is to validate what are

commonly called non-func"onal requirements. Does the designed architecture support the levels of

performance necessary? Does the system have enough memory, enough storage, and enough

processing power? Can the system design support the opera"onal needs of the customer?

Royce’s Five Fixes #4 – Plan, Control and Monitor Tes ng

Royce’s fourth fix was focused on the tes"ng phase. This was the phase of greatest risk and greatest

effort. He states, Without ques"on the biggest user of project resources, whether it be manpower,

computer "me, or management judgment, is the test phase. He even acknowledges that the prior

three recommenda"ons are all aimed at uncovering and solving problems before entering the test

phase.

Royce has several sugges"ons for tes"ng, most of which may no longer be true with modern test

automa"on capabili"es. For example, one sugges"on Royce made was to review every line of code

by human eye because using computer "me for that is too expensive. However, he does emphasize

the benefits of good documenta"on in this effort when he says:

Many parts of the test process are best handled by test specialists who did not necessarily

contribute to the original design. … With good documenta�on it is feasible to use

specialists in so�ware product assurance who will, in my judgment, do a be6er job of

tes�ng than the designer. [2]

So again we see Royce’s perspec"ve as a soAware program manager who is trying to control costs

AND find ways to ensure the soAware delivered is of high quality as possible.

Royce’s Five Fixes #5 – Involve the Customer

Royce’s fiAh fix is one that may surprise those who think customers in the Waterfall process are only

involved in the requirements and opera"ons phases, with some involvement in the tes"ng phase. As

Royce says:

For some reason what a so�ware design is going to do is subject to wide interpreta
on even

a�er previous agreement. It is important to involve the customer in a formal way so that he

has commi�ed himself at earlier points before final delivery. To give the contractor free rein

between requirement defini�on and opera�on is invi�ng trouble. [2]

Royce then lists specific places in the program effort where the customer should be involved, at a

minimum. These are:

o During the requirements phase, with customer sign-off of the requirements

o During the preliminary design phase, with customer review and approval of the ini"al system

design

o During the detailed design phase, with the customer review and approval of the detailed

design of every system component

20

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

o During the final soAware acceptance reviews

However, it should also be noted that the cap"on under the diagram that shows the formal

recommenda"ons above [Figure 9 in the Royce paper] says Involve the customer – the involvement

should be formal, in-depth, and con�nuing.

Royce’s Recommenda ons – The Final Result

All of the recommenda"ons above are captured in the final diagram of Royce’s paper [Figure 10],

which show a far more complex process than is usually a�ributed to Waterfall. This is what I call

‘Royce’s’ Waterfall when I need to separate it from ‘Frozen’ Waterfall, and is what Royce actually

recommends and proposes in his paper:

Figure 10

DOD Standard 2167

So if Royce did not describe the ‘frozen’ Waterfall methodology, where did it come from? The next

culprit named is usually the U.S. Department of Defense, which supposedly adopted the 'Waterfall'

methodology in DOD Standard 2167 (published 4 June 1985) for the acquisi"on of Mission Cri"cal

Computer Systems. In doing so, it is argued that the DOD forced the ‘frozen’ Waterfall model upon

the rest of the world. [29]

The argument is that the DOD made some slight accommoda"ons to less rigid structure when they

adopted the 2167A revision of the standard, but that even that fell short.

21

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

And if you look at page 2 of the standard document, it sure looks like the military has adopted the

tradi"onal Waterfall model when you see this diagram:

The diagram seems to be implying a linear, sequen"al process, with no itera"on and revisi"ng prior

stages.

This poten"al understanding is not helped if the reader skims through the document looking for the

descrip"on of the SoAware Development Cycle, which proscribes the following steps:

1. SoAware Requirements Analysis. The purpose of SoAware Requirements Analysis is to

completely define and analyze the requirements for the soAware. These requirements

include the func"ons the soAware is required to accomplish as part of the system,

segment, or prime item. Addi"onally, the func"onal interfaces and the necessary design

constraints are defined. During Full Scale Development, and Produc"on and Deployment,

this phase typically begins with the release of the SSS [System/Segment Specifica"on],

Prime Item Specifica"on(s), Cri"cal Item Specifica"on(s), or Preliminary SRS(s) [SoAware

Requirements Specifica"on] and IRS(s) (Interface Requirements Specifica"on), and

terminates with the successful accomplishment of the SSR. During this phase, analyses and

trade-off studies are performed, and requirements are made defini"ve. The results of this

phase are documented and approved requirements for the soAware. At the ini"a"on of

22

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

SoAware Requirements Analysis, plans for developing the soAware are prepared or

reviewed (as applicable).

2. Preliminary Design. The purpose of Preliminary Design is to develop a design approach

which includes mathema"cal models, func"onal flows, and data flows. During this phase

various design approaches are considered, analysis and trade-off studies are performed,

and design approaches selected. Preliminary Design allocates soAware requirements to

TLCSCs, describes the processing that takes place within each TLCSC [Top-Level Computer

SoAware Component], and establishes the interface rela"onship between TLCSCs. Design

of cri"cal lower-level elements of each CSCI may also be performed. The result of this

phase is a documented and approved top-level design of the soAware. The top-level design

is reviewed against the requirements prior to ini"a"ng the detailed design phase.

3. Detailed Design. The purpose of Detailed Design is to refine the design approach so that

each TLCSC is decomposed into a complete structure of LLCSCs [Lower-Level Computer

SoAware Components] and Units. The detailed design approach is provided in detailed

design documents and reviewed against the requirements and top-level design prior to

ini"a"ng the coding phase.

4. Coding and Unit Tes"ng. The purpose of Coding and Unit Tes"ng is to code and test each

Unit of code described in the detailed design documenta"on. Each Unit of code is reviewed

for compliance with the corresponding detailed design descrip"on and applicable coding

standards prior to establishing internal control of the Unit and releasing it for integra"on.

5. CSC Integra"on and Tes"ng. The purpose of CSC [Computer SoAware Component]

Integra"on Tes"ng is to integrate and test aggregates of coded Units. Integra"on tests

should be performed based on documented integra"on test plans, test descrip"ons, and

test procedures. CSC Integra"on test results, and CSCI test plans, descrip"ons, and

procedures for tes"ng the fully implemented soAware are reviewed prior to the next phase

of tes"ng.

6. CSCI Tes"ng. The purpose of CSCI tes"ng is to test the fully implemented CSCI [Computer

SoAware Configura"on Item]. Tes"ng during this phase concentrates on showing that the

soAware sa"sfies its specified requirements. Test results should be reviewed to determine

whether the soAware sa"sfies its specified requirements.

However, actually reading through the standard begins to immediately show that this assump"on is

not correct, as the following statements from just the first 4 pages of the standard indicate:

1. This standard is intended to be dynamic and responsive to the rapidly evolving soAware

technology field. As such, this standard should be selec"vely applied and tailored to fit the

unique characteris"cs of each soAware acquisi"on program. (Page iii, item 2)

2. SoAware development is usually an itera"ve process, in which an itera"on of the soAware

development cycle occurs one or more "mes during each of the system life cycle phases

[Figure 1]. (Page 1, sec"on 1.2)

3. This standard, or por"ons thereof, may not apply to small applica"ons which perform a

fixed func"on that is not expected to change for the life of the system. (Page 1, sec"on

1.2.2)

4. SoAware shall be developed in accordance with this standard to the extent specified in the

contract clauses, SOW, and the Contract Data Requirements List. … The contrac"ng agency

23

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

will tailor this standard to require only what is needed for each individual acquisi"on.

(Page 4, sec"on. 1.3)

Like Royce, the DOD is looking at the full lifecycle of a piece of soAware. They envisage the need for

developers other than the contractor(s) to maintain and enhance the applica"on being developed,

and they see documenta"on as being a cri"cal support tool for that process.

This is further confirmed later in the document when there are explicit mandates for the contractor

to provide standard user instruc"ons (sec"on 5.2.1.8), error iden"fica"on and diagnos"cs

instruc"ons (sec"on 5.2.1.9), and system life cycle support documenta"on (5.2.1.10).

But even in this standard, the DOD is not manda"ng the use of this approach all of the "me, even for

cri"cal soAware. Item 4.8 on page 16 makes this clear when it states:

The contractor shall use a top-down approach to design, code, integrate and test all CSCIs

[Computer So�ware Configura
on Item], unless specific alterna�ve methodologies have

been proposed in either the SSPM [So�ware Standards and Procedures Manual] or SDP

[So�ware Development Plan] and received contrac�ng agency approval.

And when it states:

The contractor may depart from a top-down approach to: (1) address cri
cal lower-level

elements or (2) incorporate commercially available, reusable, and Government furnished

so�ware. (Page 28, item 5.3.1.4)

A more detailed examina"on would also show that the SoAware Development Cycle is described as

being part of a larger System Development Cycle that is not captured in the diagram shown above.

The descrip"on the System Development Cycle stages is enlightening. It states:

o The system life cycle consists of four phases: Concept Explora"on, Demonstra"on and

Valida"on, Full Scale Development, and Produc"on and Deployment. The soAware

development cycle consists of six phases: SoAware Requirements, Analysis, Preliminary

Design, Detailed Design, Coding and Unit Tes"ng, CSC Integra"on and Tes"ng, and CSCI

Tes"ng. The total so:ware development cycle or a subset may be performed within each of

the system life cycle phases. Successive itera ons of so:ware development usually build

upon the products of previous itera ons. (Page 61, sec"on 20.4)

o Concept Explora on. The Concept Explora"on Phase is the ini"al planning period when the

technical, strategic, and economic bases are established through comprehensive studies,

experimental development, and concept evalua"on. This ini"al planning may be directed

toward refining proposed solu"ons or developing alterna"ve concepts to sa"sfy a required

opera"onal capability.

o During this phase, proposed solu"ons are refined or alterna"ve concepts are

developed using feasibility assessments, es"mates (cost and schedule, intelligence,

logis"cs, etc.), trade-off studies, and analyses. The SSA [SoAware Support Agency]

and user should be involved in these ac"vi"es.

o For computer resources, the soAware development cycle should be tailored for use

during this phase and may result in demonstra"on of cri"cal algorithms,

breadboards, etc.

o Demonstra on and Valida on. The Demonstra"on and Valida"on Phase is the period when

major system characteris cs are refined through studies, system engineering, development

24

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

of preliminary equipment and prototype computer so:ware, and test and evalua on. The

objec"ves are to validate the choice of alterna"ves and to provide the basis for determining

whether or not to proceed into the next phase.

o During this phase, system requirements, including requirements for computer

resources, are further defined, and preferred development methodologies for

computer soAware and data bases are selected. The results of valida"on ac"vi"es

are used to define the system characteris"cs (performance, cost, and schedule) and

to provide confidence that risks have been resolved or minimized.

o For computer resources, the soAware development cycle should be tailored for use

during this phase, resul"ng in prototype soAware items.

o Full Scale Development. The Full Scale Development phase is the period when the system,

equipment, computer soAware, facili"es, personnel subsystems, training, and the principal

equipment and soAware items necessary for support are designed, fabricated, tested, and

evaluated. It includes one or more major itera ons of the so:ware development cycle. The

intended outputs are a system which closely approximates the produc"on item, the

documenta"on necessary to enter the system’s Produc"on and Deployment phase, and the

test results that demonstrate that the system to be produced will meet the stated

requirements. During this phase the requirements for addi onal so:ware items embedded

in or associated with the equipment items may be iden fied. These requirements may

encompass firmware, test equipment, environment simula"on, mission support,

development support, and many other kinds of soAware.

o SoAware requirements analysis is performed in conjunc"on with system engineering

ac"vi"es related to equipment preliminary design. SRSs and IRSs for each CSCI are

completed and authen"cated at the SSR, establishing the Allocated Baseline for each

CSCI. Requirements for soAware that is part of an HWCI [Hardware Configura"on

Item] may be authen"cated during HWCI design reviews. The OCD [Opera"onal

Concept Document] is completed and reviewed at the SSR as well.

o A preliminary design effort is accomplished and results in a design approach. For

computer soAware, preliminary design includes the defini"on of TLCSCs in terms of

func"ons, external and internal interfaces, storage and "ming alloca"on, opera"ng

sequences, and data base design. Detailed design of cri"cal lower-level elements of

the CSCI may be performed as well.

o Produc on and Deployment. The Produc"on and Deployment Phase is the combina"on of

two overlapping periods. The produc"on period is from produc"on approval un"l the last

system item is delivered and accepted. The objec"ve is to efficiently produce and deliver

effec"ve and supported systems to the user(s). The deployment period commences with

delivery of the first opera"onal system item and terminates when the last system items are

removed from the opera"onal inventory.

o A:er a system is in opera onal use, there are a variety of changes that may take

place on the hardware items, so:ware items, or both hardware and so:ware

items. Changes to so:ware items may be necessary to remove latent errors,

enhance opera ons, further system evolu on, adapt to changes in mission

requirements, or incorporate knowledge gained from opera onal use. Based upon

complexity and other factors such as system interfaces, constraints, and priori"es,

control of the changes may vary from on-site management to complex checks and

balances with mandatory security keys and access codes. …… The same six phases of

25

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

the soAware development cycle are u"lized for each change during the Produc"on

and Deployment phase (see Figure 4).”

Signs that the DOD was not manda"ng the ‘frozen’ Waterfall structure are further shown on page 69

of the standard, in sec"on 20.4.5, SoAware Development Cycle Applica"on and Documenta"on. This

sec"on includes such statements as:

o The soAware development cycle may span more than one system life cycle phase, or may

occur in any one phase.

o The phases in the soAware development cycle may involve itera"ons back to previous

phases. For example, design may reveal problems which lead to the revision of requirements

and re-ins"tu"on of certain analyses; checkout may reveal errors in design, which in turn

may lead to redesign or requirements revision; etc.

So by reading the specifica"on it would seem that what the DOD actually proscribed was a hybrid of

incremental and itera"ve processes, implemented within a version of the more process-controlled

Waterfall structure that Royce proposed. It was closer to the strict Waterfall methodology in the

design and coding of each phase of a soAware component, but not of the en"re solu"on.

Note that the DOD standard specifically supports such ac"vi"es as:

o Mul"ple itera"ons

o Prototyping

o User involvement in solu"on design and specifica"on

o The discovery of new requirements during and aAer a soAware cycle

o Tes"ng from very early phases

o And even alterna"ve development methodologies

In the end, I suspect a similar issue occurred with the DOD Standard as with the Royce paper. But

rather than people just looking at the pictures (or even just the first picture) and not bothering to

read the text; you had a lot of DOD personnel and contractors who looked at the pictures, skimmed a

bit of the text, and following the tradi"on of bureaucra"c processes everywhere, implemented it in a

rigid and detailed manner as possible in order to CYA (Cover Your Ass for those unfamiliar with the

acronym).

The ‘Freezing’ of the Waterfall

Given the above, the exact origin of the ‘frozen’ Waterfall interpreta"on is a bit of a mystery to me [I

may not have come across the right reference yet, I fully admit]. I see this methodology described in

many places, but I can’t find an origin for what is commonly described as Waterfall in any of the

papers that are cited as the ’source’ of the Waterfall concept.

I would go so far as to say that the highly rigid process commonly described as tradi"onal

development, or what I call ‘frozen’ waterfall, has probably never been prac"ced since the 1960’s or

before. Even in 1970 Royce was describing the common soAware development process of the "me

as being at least a par"ally itera"ve process. I don’t know a single Business Analyst who has ever

been told to use this exact, highly rigid, methodology [although again, I will admit there is certainly

that possibility].

26

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

However, I would argue that such rigidness should not be blamed on a methodology that does not

seem to exist as more than a theore"cal straw man,[9] and that instead the problem in those cases is

the people advoca"ng such rigidness.

So that raises the ques"on, how did the common percep"on of the Waterfall Model as being so

incredibly rigid and silo’d come about? Unfortunately, I can’t tell you. I do know that by 1988 you

can find quotes like this one from academic literature:

The waterfall model makes the assump
on that all ac
vity of a certain type occurs during

the phase of that same name and that phases do not overlap. Thus all requirements for a

project occur during the requirements phase; all design ac
vity during the design phase. [28]

And by 1994 you can find quotes like the one below in academic papers:

The so-called Waterfall model has been, un
l recently, the most frequently used model for

controlling and guiding complex so�ware development projects. The basic idea underlying

this model is that development proceeds in stages. Each stage must or phase must be

finished in its en�rety before a new phase can start. Just as water in a waterfall cannot

flow back, phases that are finished should not be started again. [27] [Emphasis mine]

Unfortunately, these just point to "me periods where the percep"on of ‘Waterfall’ had shiAed to the

‘Frozen’ interpreta"on, but not the source or reason for that percep"on. What’s funny is that

neither of the two papers above cites the Royce paper when talking about ‘Waterfall’. Indeed,

neither paper cites ANY source for their statements, which indicates to me that they thought their

understanding of Waterfall was so commonly understood and agreed upon that no cita"on was

necessary.

The best reason I can find for the emergence of the ‘Frozen’ Waterfall concept comes from a blog

post by Professor David Dischave, in which he recites the following story:

My first encounter with the mythical Waterfall methodology was in the early 1980’s. As the

director of a systems development department at a fortune 100 company I received a visit

from a salesman from Coopers & Lybrand (C&L.) As the director of a mul
-million dollar IT

department you can imagine how many people wanted to sell me stuff. The C&L sales rep,

a�emp
ng to sell me a methodology called Summit-D, asked me what systems development

method we used. So I shared with him that our shop standard was the Systems Development

Lifecycle which entails doing a bunch of tasks and ac
vi
es and we grouped in five phases:

planning, analysis, design, implementa
on and maintenance & support. I went on to say;

you know, we subscribe to Winston Royce’s work.

Before I could finish my descrip
on, the C&L sales rep quipped right back with 'ahhh, you are

using that old obsolete Waterfall model. Oh, by the way who is Winston Royce?' Not wai
ng

for an answer, he added, nobody should use the Waterfall model anymore. 'You see, Dave,

once you complete a phase it is frozen.' I asked, what is this Waterfall thing that you keep

referencing? The C&L sales rep said it is the method almost every company uses, where the

phases are worked sequen
ally i.e. in lock step and no phase can start un
l the previous one

finishes). He went on to say that all deliverables produced in a phase were frozen once that

phase ended. He said each phase cascades down into the next, you know, like a waterfall.

'See, it is called waterfall because water just can’t flow up hill.'

You can imagine what I must have been thinking. At that �me, I’d been in IT applica�on

development for 20 years with five different major corpora�ons and I was introduced to

27

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

waterfall - by a salesman. I had never heard of a waterfall method. In all of the years and

all of the places I worked and all of the conferences I had been to, I didn’t know of any

organiza�on that built systems this way. Yes, I did try to dissuade the sales rep that we

were not using any waterfall, watering hole, water table, water can or water cooler

methods but as you can suspect sales folks can’t sell you a solu�on if you don’t have a

problem and he was really trying to create a problem.” [10]

The idea that the common percep"on of ‘Waterfall’ as being of the ‘Frozen’ interpreta"on could be

due to nothing more than sales folks needing a straw-man to compare their ‘new and improved’

product against doesn’t really seem that outrageous to me. But if anyone can provide alterna"ve

explana"ons please let me know.

The Many Misconcep ons of Waterfall

IMPORTANT NOTE: This sec"on a�empts to address to some of specific misconcep"ons about

Waterfall model that I see out there. Importantly, I equate the Waterfall model with what Royce

actually described in his paper, with the possibility of expanding that defini"on to include what is in

DOD-2167. At its most restric"ve interpreta"on, you might equate this to Figure 3 in Royce’s paper,

or at the wider end you may equate it to Figure 10 in his paper or to the full scope of DOD-2167.

I am going to assume that you have not read the historical informa"on above, and will try to

summarize that informa"on where appropriate. However, in some cases where there is too much

informa"on to easily summarize, I will simply refer to the informa"on above.

Royce Only Described Waterfall as an Example of What Not to Do

One myth about Waterfall that seems arise frequently in one form or another is that Royce discussed

‘Waterfall’ only as an example of what not to do, or as a straw-man that he could then tear down. [35]

This myth seems to have mul"ple ideas behind it. Among the most common quotes from Royce cited

for this belief are the following: [2]

… a more grandiose approach to so�ware development is illustrated in Figure 2

… the implementa
on described above is risk and invites failure

And then you get people who misunderstand [I think] Royce and who state things such as the

following:

… there’s no empirical evidence to back the claim that a linear process works, and actually there’s

not even a fluffy “i think so” claim to that effect, but rather Royce considers the idea unworkable. [31]

[emphasis mine]

There are a couple of problems here.

The first problem is the misunderstanding that what many people think of as ‘the Waterfall model’

isn’t what he talked about even in the early part of his paper. It is only an incomplete diagram that is

used to provide an overview. This is especially common for people who take the statement a more

grandiose approach to so�ware development is illustrated in Figure 2, and equate Figure 2 with the

Waterfall model that his paper was discussing.

28

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

The second problem is the belief that Royce was describing a linear process at all.

Part of the problem is that Figure 2 IS the model that most people think was what Royce was

describing in his overall paper. Here is Figure 2 for reference:

But that’s not the specific process Royce is discussing for most of the paper. It’s not even the process

he cri"cizes in the paper. It’s just a high-level overview (a ‘grandiose’ view). This is made clear by the

start of the paragraph directly aAer the quote above, in which he says Figure 3 portrays the itera"ve

rela"onship between successive development phases for this scheme. Note that this scheme refers

to Figure 2, and Figure 3 is showing the itera"ve nature of Figure 2. And here is Figure 3 for

reference:

It is about Figure 3 that Royce states I believe in this process, but the implementa
on described

above is risky and invites failure. However, he then goes on to discuss the tes"ng phase exposing

issues such as "ming, storage, input/output transfers, etc. [2] You’ll note that these aren’t standard

‘soAware requirements’. Rather they fall into what we commonly call ‘non-func"onal requirements’

29

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

and which are highly-dependent on the system design. As Royce says, These phenomena are not

precisely analyzable.

So right there I think we can dismiss the idea that Royce was only describing something he thought

would fail or that was unworkable. This is further supported by the start of the second paragraph

aAer the sentence quoted above, which states:

However, I believe the illustrated approach to be fundamentally sound. The reminder of this

discussion presents five addi
onal features that must be added to this basic approach to

eliminate most of the development risks. [2]

Royce then goes on to suggest 5 enhancements for the basic process that his describes in Figure 3,

and which are all documented above.

Royce / Boehm Was Responsible for Adding Itera ve Features to the Base Waterfall Model

Another misconcep"on I’ve seen in a few places is that either Royce [32] or Boehm added itera"ve

features to the standard Waterfall model. This misconcep"on usually refers to a figure similar to

Figure 3 from Royce’s paper, which is displayed below.

However, as stated above, Royce says Figure 3 portrays the itera"ve rela"onship between successive

development phases for this scheme. Note that this scheme refers to Figure 2 which was most

people think of as the Waterfall model, and Figure 3 is showing the itera"ve nature of Figure 2.

So the ‘Waterfall Model’ included these features from the beginning and they actually pre-date

Royce.

Royce Only Intended the Waterfall Model to Be Used For The Simplest of Efforts

This misconcep"on is directly contradicted in the very first line of the Royce paper when he states

that he is providing his personal views on managing large soAware developments. Indeed, he clearly

states that for the simplest of efforts, you only need the Analysis and Coding steps that are shown in

30
Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

Figure 1 of his paper. The whole point of both the Royce and Bennington papers was that they were

targeted at very complex, very large development efforts.

Waterfall Means Never Working Itera vely

As stated in DOD 2167, SoAware development is usually an itera"ve process, in which an itera"on of

the soAware development cycle occurs one or more "mes during each of the system life cycle

phases. [3]

The DOD’s system life cycle fully envisions mul"ple tracks of concurrent and itera"ve development.

Royce’s Waterfall was definitely less explicitly itera"ve, but its specific inclusion of prototypes and

itera"ons back to prior steps (both the immediately prior stage and larger steps back) would indicate

that itera"ve development was at least minimally supported, if not fully expected.

Waterfall Means Doing All Development at Once

Royce’s Waterfall model included the op"on of itera"ng back to prior steps in the process. Most

commonly the immediately-prior step, but also further back. So while in general most development

would be done in one large stage, it allowed for op"ons to do it later. Also, the use of a fully

developed prototype by Royce allows for early development to be done, especially in the area of

confirming system design op"ons. Indeed, this was the main point of the prototype step envisioned

by Royce.

This was further emphasized by the DOD in standard 2167 when it said, SoAware development is

usually an itera"ve process, in which an itera"on of the soAware development cycle occurs one or

more "mes during each of the system life cycle phases. [3]

Waterfall Means No Customer Involvement A:er Requirements

A common misconcep"on is something like Customers don’t provide any input un"l the solu"on is

delivered or in tes"ng. [4] This simply isn’t true.

According to Royce customers must provide input to the requirements; sign off on the baseline

requirements (which are fully documented); review and approve the preliminary technical design

(also fully documented); review and approve the interface design (again, fully documented and

which would presumably include wireframes and similar visual models); review and approve the

detailed program designs (mul"ple reviews per Royce’s model) before ANY code is generated;

interact with and review a prototype (if created); review the test plans; and finally, test and approve

the working code. This is hardly consistent with the idea of no involvement aAer requirements.

But that is just customer involvement in documenta"on and design plans. Royce espouses the use of

an ini"al prototype in his document. But modern prototyping and simula"on tools (such as iRise as

an example) didn’t exist then. With tools like those and the use of Model-View-Controller (MVC)

design methods, there is nothing in Waterfall that prevents users from being heavily involved in the

design and implementa"on of the user interface long before the rest of the soAware is ‘done’.

31

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

Waterfall Means SeHng Impossible Deadlines

This is a myth I’ve found associated to Waterfall that baffles me. Nowhere in any of the ‘source’

documents for Waterfall is there any discussion of seQng deadlines, rigid schedules, or even

specifying the exact work that has to be done to implement a soAware program (the detailed design)

early in the process. Not in Bennington, not in Royce, not in DOD-2167. But I see references to

Waterfall including some assump"on of an ability to reliably predict when we are going to deliver a

system [36] or something to that effect.

Yes, Waterfall is a ‘planned’ methodology. But planning does not mean seQng deadlines. All of the

planning discussed in the sources I reference above is about planning features, requirements,

designs, and system resources. It’s about understanding what you need, as much as possible, and

then crea"ng a plan for soAware that fulfills those needs.

All three main sources indicate that there will be changes needed even aAer a soAware program

goes into opera"ons. All three state that there is significant unpredictability in developing soAware.

Deadlines are no more an aspect of Waterfall than they are of ‘Agile’ or any other development

methodology. They are a factor of management and markets. Nothing more.

Waterfall Means that Time from Specifica on to Delivery is Great

Another misconcep"on is that Waterfall is that it oAen took a long "me between the requirement

phase and the user feedback phase, [33] entailing months or more of delay from specifica"on un"l

working soAware is delivered. Or as Sco� Ambler put it:

The period between the
me that the requirements are 'finalized' to the
me that the

system is actually deployed will o�en span months, if not years. During this
meframe

changes will occur in the marketplace, legisla
on will change, and your organiza
on's

strategy will change. All of these changes in turn will mo
vate true changes to your

requirements. [40]

This is an issue of scope, rather than methodology. There is absolutely nothing in the overall

Waterfall concept that prevents chunking the business needs into smaller pieces, documen"ng them

as discreet requirements, and delivering those smaller chunks rapidly as mul"ple, sequen"al

Waterfall efforts. That is literally what the original itera"ve methodology concept was. Essen"ally

using the Program of mul"ple Projects approach to deliver mul"ple chunks of an overall solu"on in

smaller, more rapid phases. Indeed, this is exactly what DOD-2167 does with its larger System

Lifecycle and smaller SoAware Lifecycle.

There is also nothing in Waterfall that prevents changes to the requirements or design as the

solu"on moves forward. Discover a new requirement? Evaluate it and if it’s worth adding, start the

change management process to make the appropriate changes.

The Author(s) of DOD-2167 Had Never Heard of Itera ve Development

A fairly common misconcep"on is that the author(s) of the DOD-2167 standard had never heard of,

or weren’t familiar with, Itera"ve Development. In its more prosaic form this myth gets stated like

this:

32

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

But, things change as a busy engineer in the US defense organiza
on is asked to come up

with a standard for military grade so�ware projects. He doesn’t know what a good process

would be, and he’s told that 'Hey, Royce already came up with the correct method: the

waterfall. Use it.' So the waterfall becomes the US military standard DoD-2167. [15]

The main source of this seems to be a book by Craig Larson in which he states that the primary

author of the standard told him:

He was not familiar with the prac
ce of
meboxed itera
ve development and evolu
onary

requirements at the
me. [30]

I can’t iden"fy the author(s) from the specifica"on, and Mr. Larson does not iden"fy his source in his

book, so I have no way to further research this.

However, in looking at the standard itself this seems extremely implausible. Consider that the 3rd

sentence (and start of the 2nd paragraph) of DOD-2167 says the following:

So�ware development is usually an itera
ve process, in which an itera
on of the so�ware

development cycle occurs one or more
mes during each of the system life cycle phases.

I will grant that the "me-boxed part that statement is probably true. And possibly even the

evolu"onary part, if not under that name. However, given the actual text of DOD-2167 it seems less

likely that the author(s) were not familiar with the concept of evolu"onary development. Although

again, perhaps not under that name.

Add in that it seems unlikely that the DOD would rely on a single person as the main author of such a

standard when they would presumably have had access to a wealth of highly-knowledgeable

resources such Barry Boehm and others who had years of experience (if not decades) in building

large systems for government contractors like TRW. Or that the military (and US Government in

general) tends to turn towards think-tanks like Rand or government contractors like IBM to provide

model standards for things like soAware development.

In the end, I simply can’t find any plausible informa"on that would suggest this myth is true.

Slow Reac on and High Cost of Change

Another misconcep"on is that Waterfall must be slow to react to change and that the cost of change

is great. While a formal change control process means that Waterfall may not react to change

immediately, it does mean that change is at least evaluated before it is made. Because change can

be made at any point, even before coding has begun, I would argue that change is poten"ally

cheaper in Waterfall (in some instances) because change can be made before any development (with

its high modern cost) has been done.

With agile, change is usually only iden"fied aAer some coding has been done. While this might make

some changes easier to iden"fy (as there is working code), it also means you have already paid

development staff to create that soAware. And in the modern cost structure of soAware

development, development work is usually among the highest-cost ac"vi"es that are undertaken.

Yes, the change may be smaller since in theory the sprint is working on a smaller func"onal base, but

that does not mean that a change will not require significant architecture changes that mandate the

re-work of major por"ons of prior sprints. Indeed, in my experience the need for significant

33

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

architectural change (and its associated delays and costs) is more common among large-scale ‘agile’

projects than among large-scale ‘waterfall’ projects.

Is the ‘Waterfall’ Name Permanently Tainted?

Despite all the informa"on above, I’m sure that the term ‘Waterfall’ will con"nue to be associated

with the ‘Frozen’ interpreta"on that has now become the common understanding in soAware circles

of what ‘Waterfall’ means. This is regre�able because Winston Royce’s name is s"ll commonly

associated with that interpreta"on, despite it having virtually no connec"on to what his paper

described.

It also seems increasingly anathema to many in the soAware world to speak posi"vely of planned

development methodologies like Royce described, or even later evolu"ons of the concept. Trying to

say anything good about ‘Waterfall’ on an internet discussion forum will generally make you a target

for derision, scorn, or outright hos"lity. So what do you do if you want to talk about planned

development but find the term ‘Waterfall’ has become too toxic to have meaningful conversa"ons

about?

Some might use the term Big Development Up Front,[38] but that seems to have become just a

synonym for ‘Waterfall’ because it assumes the programs design is to be completed and perfected

before that programs implementa"on is started. [39]

The best op"on I have found are terms like Planned Development which the IIBA seems to have

adopted for all non-agile methodologies.

But even that will run into those who feel that any a�empt to plan is a mistake. I have my own

disagreements with that point of view, but they are outside the scope of this ar"cle. All I can say is

that no ma�er what the original authors proposed, the term ‘Waterfall’ seems to be inextricably

linked with the ‘Frozen’ interpreta"on and so your use of the term should take that into account.

‘Modern’ Interpreta ons

So if the term ‘Waterfall’ is tainted, and you are looking for a more project-management focused

planned development approach [seQng aside whether you think that is a good idea or not], what do

you do?

From the reading I have done, it seems likely that at least one reason for the misunderstanding of

what Royce was describing was due to the diagrams he chose to use. So the following are a�empts

to re-configure the diagrams Royce used into something that is more likely (I hope) to show what he

was proposing, or which provide a more ‘modern’ take on what ‘Waterfall’ or similar planned

development approaches might look like.

The first a�empt I made results in the following double-loop design. The primary flows follow the

darker lines, with the grey lines being opportuni"es to ‘jump’ the flow to other loca"ons.

34

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

The other idea was to show a version that is closer to what is in DOD-2167 and which is design for

the defini"on of an overall set of requirements, but with the phased implementa"on of those

requirements.

This model is simplified slightly, but the idea is essen"ally to leverage concepts from both worlds.

The idea is something like this:

1. Define the requirements, and especially the en"re system architecture to as great a degree

as possible first.

2. From that system design and requirements, start carving out func"onal sub-sets that can be

built and implemented on their own.

3. As these are implemented, integrated, and in opera"on (if possible); feedback is gathered

and changes to the requirements are made.

4. Those changes in requirements are incorporated into the ongoing design phase, assigned to

one of the development streams, and integrated and deployed to opera"ons when

appropriate.

This results in an ‘alterna"ve’ Waterfall that looks like the model below.

35

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

This is the current end of this ar"cle. Any feedback, addi"onal cita"ons, and alterna"ve ideas would

be appreciated.

References

1. Research Paper - Produc on of Large Computer Programs, by Herbert D. Bennington.

From a presenta"on at a symposium on advanced programming methods for digital

computers sponsored by the Navy Mathema"cal Compu"ng Advisory Panel and the

Office of Naval Research in June 1956. Forward with addi"onal material added in 1987.

h�ps://mosaicprojects.com.au/PDF-Gen/Benington_-_Produc"on_of_Large_Computer_Programs.pdf

2. Research Paper: Managing the Development of Large So:ware Systems, by Dr. Winston

W. Royce, 1970. h�ps://mosaicprojects.com.au/PDF-Gen/Royce_-

_Managing_the_development_of_large_soAware_systems.pdf

3. Military Standard: DOD-STD-2167: Defense System So:ware Development, 4 June 1985.

h�ps://mosaicprojects.com.au/PDF-Gen/DOD-STD-2167.pdf

4. Research Paper: Toxic Concepts in Systems Analysis and Design: The Systems

Development Lifecycle. By Paul Ralph. May 2010.

36

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

h�ps://eprints.lancs.ac.uk/id/eprint/47395/1/Toxic_Concepts_in_Systems_Analysis_and

_Design_The_Systems_Development_Lifecycle.pdf

5. Research Paper: A Review of Risk Management in Different So:ware Development

Methodologies. By Hijazi, Khdour, and Alarabeyyat. May 2012.

h�ps://research.ijcaonline.org/volume45/number7/pxc3879113.pdf

6. <deleted>

7. Wikipedia Entry: Waterfall Model. On Wikipedia. Various Authors. Accessed on 15

October 2014. h�ps://en.wikipedia.org/wiki/Waterfall_model

8. Ar"cle: There's no such thing as the Waterfall Approach! (and there never was). By

Conrad Weisert. Informa"on Disciplines, Inc. 8 February 2003.

9. Wikipedia Entry: Straw man. On Wikipedia. Various Authors. Accessed on 16 October

2014. h�ps://en.wikipedia.org/wiki/Straw_man

10. Ar"cle: A Waterfall Systems Development Methodology … Seriously? By David

Dischave. On the Global Enterprise Technology web site. 17 September 2012.

11. Using this formula: (50 * (236.2 / 27.2)) = 434.19. Calculated based on informa"on found

at the The Federal Bank of Minneapolis

12. Research Paper: So:ware Requirements - Are They Really a Problem? By T.E. Bell and T.

A. Thayer. Proceedings of the 2nd interna"onal conference on SoAware engineering. IEEE

Computer Society Press, 1976. h�ps://mosaicprojects.com.au/PDF-

Gen/soAware_requirements_are_they_really_a_problem.pdf

13. Blog Post: The Waterfall Accident. By Pascal Gugenberger. On his personal web site.

2011.

14. Research Paper: The Impact of DoD-Std-2167A on Itera ve Design Methodologies –

Help or Hinder? By Sco� P. Overmyer. ACM SIGSOFT SoAware Engineering Notes. 1990.

15(5), 50-59.

15. Blog Post: Don’t draw diagrams of wrong prac ces – or Why people s ll believe in the

Waterfall model. By Tarmo Toikkanen. On his personal blog. 9 September 2005.

h�ps://www.tarmo.fi/2005/09/09/dont-draw-diagrams-of-wrong-prac"ces-or-why-

people-s"ll-believe-in-the-waterfall-model/

16. Ar"cle: Department of Defense MIL-STD-2167 Waterfall is Itera ve. By Kenneth Shafer.

On the Legacy Guild web site. 27 December 2013.

h�ps://legacyguild.org/index.php?page=downloads&type=entry&id=object-oriented-

and%2Fdepartment-of-defense

17. Blog Post: Waterfall Model Probably the Most Costly Mistake in the World. By Rolf H.

On the Value@Work blog. 18 April 2013. h�p://valueatwork.se/waterfall-model-

probably-the-most-costly-mistake-in-the-world/?lang=en

18. Technical Report: Evolu onary So:ware Development. By NATO Task Group IST-026.

August 2008.

19. Working Paper: Beyond the Waterfall – So:ware Development at Microso:. By

Michael A. Cusumano and Stanley Smith. MIT Sloan School of Business. 16 August 1995.

h�ps://dspace.mit.edu/bitstream/handle/1721.1/2593/SWP-3844-

33836288.pdf?sequence=1

37

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

20. Wikipedia Entry: Source Lines of Code. By various authors. Accessed on November 16,

2014. h�ps://en.wikipedia.org/wiki/Source_lines_of_code

21. Research Paper: A View of 20th and 21st Century So:ware Engineering. By Barry

Boehm. Presented at ICSE’06 in Shanghai, China. 2006.

22. Wikipedia Entry: Structured Programming. Various Authors. Accessed on 17 November

2014. h�ps://en.wikipedia.org/wiki/Structured_programming

23. Wikipedia Entry: SpagheH Code. Various Authors. Accessed on 17 November 2014.

h�ps://en.wikipedia.org/wiki/SpagheQ_code

24. Blog Post: There is No Such Thing as Waterfall. By Erik Dietrich. On the DaedTech blog.

September 19, 2012. h�ps://daedtech.com/there-is-no-such-thing-as-waterfall/

25. White Paper: Methodology for Rapid Development of C2 Planning Systems. By Sheena

Kelsey and Simon Snell. Of Qine"Q. 2003.

26. Research Paper: A Spiral Model of So:ware Development and Enhancement. By Barry

Boehm. Computer 21, no. 5 (1988). 61-72.

27. Research Paper: Constraint-Driven So:ware Design - An Escape From the Waterfall

Model. By R Hoog, T Jong, F Vries. Performance Improvement Quarterly, 1994.

h�ps://research.utwente.nl/en/publica"ons/constraint-driven-soAware-design-an-

escape-from-the-waterfall-mo

28. Research Paper: Resource U liza on during So:ware Development. By Marvin V.

Zelkowitz. The Journal of Systems and SoAware. 1988.

h�ps://www.cs.umd.edu/users/mvz/pub/zelkowitz-jss-1988.pdf

29. Blog Post: The Rise and Fall of Waterfall Development. By Richard Banks. On his Agile

and .Net blog. 8 January 2009. h�ps://www.richard-banks.org/2009/01/rise-and-fall-of-

waterfall-development.html

30. Book: Agile & Itera ve Development – A Manager’s Guide. By Craig Larman. 2003.

Pearson Educa"on, Inc.

31. Blog Post: Failure of the scien fic method and the waterfall method (again). By Tarmo

Toikkanen. On his personal blog. 18 October 2007.

h�ps://www.tarmo.fi/2007/10/18/failures-of-the-scien"fic-method-and-the-waterfall-

method-again/

32. Research Paper: So:ware Development Lifecycle Models. By Nayan B. Ruparella. ACM

SIGSOFT SoAware Engineering Notes. May 2010.

33. Blog Post: The waterfall – A Historical View to Organizing So:ware Development. By

Patrik Malmquist. 5 September 2011.

34. Ar"cle: The seduc ve and dangerous V Model. By James Chris"e. On the Claro Tes"ng

web site. An expanded version of a December 2008 ar"cle that appeared in Tes"ng

Magazine.

35. Book Chapter: Why the Waterfall Model Doesn’t Work. Scaling SoAware Agility.

36. Research Paper: Anchoring the So:ware Process. By Barry Boehm. SoAware, IEEE 13.4

(1996). h�ps://www.kiv.zcu.cz/~brada/files/aswi/cteni/boehm1996anchoring.pdf

37. Research Paper: Itera ve So:ware Development – from Theory to Prac ce. By Amir

Torer, Boaz Shani, and Ely Bonne. RAFAEL, Israel.

38

Source: h�p://www.bawiki.com/wiki/Waterfall.html Downloaded 1st February 2024

h�ps://www.s"ckyminds.com/sites/default/files/ar"cle/file/2014/Itera"ve%20SoAware

%20Development-%20from%20Theory%20to%20Prac"ce.pdf

38. Wikipedia entry: Big Design Up Front. Accessed on February 1, 2015.

h�ps://en.wikipedia.org/wiki/Big_design_up_front

39. Ar"cle: Examining the ‘Big Requirements Up Front (BRUF) Approach. By Sco� Ambler.

On his Agile Modeling web site. Undated.

h�ps://agilemodeling.com/essays/examiningBRUF.htm

40. Ar"cle: Semi-Automa c Ground Environment Air Defense System Part of the Lincoln

Laboratory 'History' sec on. Accessed on 21 August 2022.

h�ps://www.ll.mit.edu/about/history/sage-semi-automa"c-ground-environment-air-

defense-system

41. Web Page: A Brief History of MITRE. Accessed on 22 August 2022.

